

## **KW1850 Smart Metering System**

User's Manual



Automation Components, Inc. [Engineering a Better Sensor Solution]

#### Copyright © 2020 V1.00

This manual may not be altered or reproduced in whole or in part by any means without the expressed written consent of ACI.

||



The information contained in this document is believed to be accurate at the time of publication, however, ACI assumes no responsibility for any errors which may appear here and reserves the right to make changes without notice. Please ask the local representative for latest product specifications before ordering.

Please read this manual carefully before installation, operation and maintenance of the KW1850 Series Power Meter. The following symbols in this manual are used to provide warning of danger or risk during the installation and operation of the meters.



Electric Shock Symbol: Carries information about procedures which must be followed to reduce the risk of electric shock and danger to personal health.



Safety Alert Symbol: Carries information about circumstances which if not considered may result in injury or death.

Prior to maintenance and repair, the equipment must be de-energized and grounded. All maintenance work must be performed by qualified, competent accredited professionals who have received formal training and have experience with high voltage and current devices. ACI shall not be responsible or liable for any damages or injuries caused by improper meter installation and/or operation.



## **Table of Contents**

| Chapter 1: Introduction4                      |
|-----------------------------------------------|
| 1.1 Meter Overview5                           |
| 1.2 Areas of Application5                     |
| 1.3 KW1850 Series Features6                   |
| Chapter 2: Installation10                     |
| 2.1 Appearance and Dimensions12               |
| 2.2 Installation Methods13                    |
| 2.3 Wiring14                                  |
| 2.3.1 Terminals14                             |
| 2.3.2 Wiring Methods16                        |
| 2.3.3 Communication Port19                    |
| Chapter 3: Appearance and Dimensions21        |
| 3.1 Display Panels and Keys22                 |
| 3.2 Energy Display and Operation24            |
| 3.3 Demand Display and Operation26            |
| 3.4 IO Display and Operations28               |
| 3.5 Real-Time Display and Key Operation30     |
| 3.6 Power Quality Display and Key Operation32 |
| 3.7 Shortcut Code35                           |
| 3.8 Basic Settings and Key Operation54        |
| 3.9 Network Settings55                        |
| 3.10 Device Information and Key Operation56   |
| Chapter 4: Functions & Software               |
| 4.1 Introduction to Acuview Software58        |
| 4.1.1 Connecting the KW1850 to Acuview58      |
| 4.2 General Settings61                        |
| 4.2.1 CT ratio and Channel Mapping64          |
| 4.3 Real Time Metering66                      |
| 4.4 Demand67                                  |
| 4.5 Energy                                    |

## **Table of Contents**

| 4.5.1 Time of Use (TOU)69                                            |
|----------------------------------------------------------------------|
| 4.6 IO Functions75                                                   |
| 4.6.1 Digital Input75                                                |
| 4.6.2 Relay Output77                                                 |
| 4.6.3 Digital Output79                                               |
| 4.7 Alarm                                                            |
| 4.8 System Event Log83                                               |
| 4.9 Data Log                                                         |
| 4.9.1 Reading the Data Log86                                         |
| 4.10 Seal Button (B1) Function88                                     |
| 4.10.1 How to use the Seal Button (B1)90                             |
| 4.11 Device Information90                                            |
| Chapter 5: Communication92                                           |
| 5.1 MODBUS Protocol Introduction92                                   |
| 5.1.1 Transmission Mode92                                            |
| 5.1.2 Protocol                                                       |
| 5.1.3 CRC Check95                                                    |
| 5.2 Modbus Communication Format96                                    |
| 5.2.1 Read Relay Output status (Function Code 01)97                  |
| 5.2.2 Read the status of DI (Function Code 02)98                     |
| 5.2.3 Read Data (Function Code 03)99                                 |
| 5.2.4 Control Relay Output100                                        |
| 5.2.5 Preset/Reset Multi-Register100                                 |
| 5.3 KW1850 Application Details and Parameter Address Table101        |
| 5.3.1 Type of Data101                                                |
| 5.3.2 Correspondence Between Communication Value and Actual Value102 |
| 5.3.3 Address Table103                                               |



KW1850 Smart Metering System

## **Chapter 1: Introduction**

**1.1 Meter Overview** 

**1.2 Areas of Application** 

**1.3 KW1850 Series Features** 



## **Chapter 1.0: Introduction**

### **1.1 Meter Overview**

The KW1850 series meter performs real-time metering, measures energy consumption and monitors power quality for up to 18 single phase circuits (or 6 three phase circuits) in one unit. It is an advanced intelligent power meter that ACI developed and manufactured for the next generation smart power distribution networks. The main features include multi-tenant sub metering, cyclic display, and tamper proof, which make it highly suitable for large commercial facilities, residential apartments and industrial environments. The KW1850 series has RS485, Ethernet and wireless (WIFI) communication options as well which can be easily be connected to intelligent power distribution monitoring systems. The KW1850 also supports several I/O options (e.g. Pulse Counting from water or gas meters), making it useful in energy management systems. Due to its communication capability, ease of installation and use, this product can be easily integrated into new and existing energy management systems.

### **1.2 Areas of Application**

- Multi-tenant sub metering/billing
  - Commercial Complex/Mall
  - Apartment/Condominiums
  - Hospitals/Public Services
  - Hotels/Office Buildings
  - Data Centers
  - LEED Projects
- Branch circuit monitoring
- Railway and Subway Systems
- Energy Management Systems
- Industrial & Utilities Applications

**WARNING:** This product shall be installed in an full enclosed industrial cabinet, the access to which is strictly limited to professional personnel.



### 1.3 KW1850 Series Features

#### **Multi-function Multi-Tenants**

KW1850 multi-function intelligent power meter utilizes powerful data acquisition and processing functions, which implements real-time metering and monitoring for up to 18 single phase circuits (or 6 three phase circuits) in one unit. It will also record system events, over/ under limit alarming and data logging functions.

#### **Innovative Display and Installation**

Multi-tenant energy information is cycled through on the high-resolution display. Current transformer installation is made simple with plug in connector to meter.

#### **Flexible Wiring**

Users can choose measuring circuits and wiring methods. Measuring circuit can be selected as 18 single phases, or 6 three phase or 6 single phase three wire.

#### Features

KW1850 features and functionality are listed in the table below.

| Function             | Parameters<br>Supported | Details                                                                                                  | Accuracy |
|----------------------|-------------------------|----------------------------------------------------------------------------------------------------------|----------|
|                      | Real Energy             | Combined energy total for all                                                                            |          |
| Energy               | Reactive Energy         | circuits                                                                                                 |          |
|                      | Apparent Energy         | Real, reactive, and apparent     energy for each circuit                                                 |          |
|                      | 4 Tariffs, 14 Schedules | Supports 14 Seasons,                                                                                     | Class    |
|                      | Daylight Savings Time   | 14 Schedules, 4 Tariffs, supporting weekend and                                                          | 0.5 S    |
| Time of Use<br>(TOU) |                         | holiday settings.                                                                                        |          |
|                      | Holidays                | <ul> <li>Supports daylight saving time<br/>and 10-year holidays with<br/>automatic switching.</li> </ul> |          |



## Chapter 1: Introduction

| Function  | Parameters<br>Supported                                                                                                                                                                                           | Details                                                                                                                                                                                        | Accuracy |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Demand    | Active Power Demand<br>Active Power Demand<br>Max<br>Reactive Power<br>Demand<br>Reactive Power<br>Demand Max<br>Apparent Power<br>Demand<br>Apparent Power<br>Demand Max<br>Current Demand<br>Current Demand Max | <ul> <li>Combined demand total for<br/>all circuits</li> <li>Active power demand,<br/>reactive power demand,<br/>apparent power demand and<br/>current demand for each<br/>circuit.</li> </ul> | 0.5%     |
|           | Voltage                                                                                                                                                                                                           | <ul><li>System Line Voltage</li><li>System Phase Voltage</li></ul>                                                                                                                             |          |
|           | Current                                                                                                                                                                                                           | <ul> <li>Combined average current<br/>for circuits being monitored</li> <li>Current readings for each<br/>circuit being monitored</li> </ul>                                                   |          |
| Real Time | Active Power                                                                                                                                                                                                      | Combined power for all                                                                                                                                                                         | 0.5%     |
|           | Reactive Power                                                                                                                                                                                                    | circuits  Active Power Reactive                                                                                                                                                                |          |
|           | Apparent Power                                                                                                                                                                                                    | Active Power, Reactive     Power, Apparent Power,                                                                                                                                              |          |
|           | Power Factor                                                                                                                                                                                                      | Power Factor and Load<br>Characteristic for each circuit                                                                                                                                       |          |
|           | Load Characteristic                                                                                                                                                                                               | being monitored                                                                                                                                                                                |          |
|           | Frequency                                                                                                                                                                                                         | System Frequency                                                                                                                                                                               |          |



# **KW1850** Smart Metering System

| Function      | Parameters<br>Supported                                                                                                                  | Details                                                                                                                                                                                                                                         | Accuracy |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Power Quality | THD<br>Individual Harmonics<br>(2~31)<br>Current K Factor<br>Crest Factor<br>Voltage Unbalance<br>Current Unbalance<br>Voltage Telephone | <ul> <li>Voltage and current THD, odd<br/>THD, even THD</li> <li>Individual Harmonics (2~31),<br/>Current K-factor (KF), crest<br/>factor (CF), telephone<br/>interference factor (THFF),</li> <li>Voltage and current<br/>unbalance</li> </ul> | 1%       |
|               | Interference Factor<br>(THFF)                                                                                                            |                                                                                                                                                                                                                                                 |          |
| Clock         | Year/Month/Day/<br>Hour/Minute/Second                                                                                                    | <ul> <li>Real time configurable clock,</li> <li>Supports NTP via WEB2<br/>communications module</li> </ul>                                                                                                                                      |          |
| Alarming      | Over/Under Limit<br>Alarming                                                                                                             | <ul> <li>Users can select parameters<br/>and configure the set point<br/>threshold over/under.</li> <li>The time and reason of an<br/>alarm event will be recorded.</li> </ul>                                                                  |          |
|               | Up to 8MB via meters<br>onboard                                                                                                          | <ul> <li>Log real-time metering<br/>parameters, I/O status, and<br/>energy measurement.</li> <li>Built in WEB2</li> </ul>                                                                                                                       |          |
| Data Logging  | Up to 8GB via WEB2<br>communications<br>module                                                                                           | communications module<br>provides an additional 8GB<br>of memory that can be used<br>for logging locally on the<br>communication module.                                                                                                        |          |



## Chapter 1: Introduction

| Function      | Parameters<br>Supported | Details                                                                               | Accuracy |
|---------------|-------------------------|---------------------------------------------------------------------------------------|----------|
|               | RS485                   | • Modbus TCP, WiFi WPA, WPA2                                                          |          |
| Communication | Ethernet/WIFI           | Enterprise security protocol,<br>HTTP/HTTPS, FTP, SMTP, NTP,<br>SNMP, BACnet IP, MQTT |          |
|               | 18 Digital Inputs       | <ul> <li>Monitors Digital Status (ON/<br/>OFF)</li> </ul>                             |          |
|               |                         | Digital Counter                                                                       |          |
| I/O           |                         | Energy Pulse Output                                                                   |          |
|               | 6 Digital Outputs       | Alarm Pulse Output                                                                    |          |
|               |                         | Latch control relay                                                                   |          |
|               | 2 Relay Outputs         | Alarm controlled relay                                                                |          |



KW1850 Smart Metering System

## **Chapter 2: Installation**

## 2.1 Appearance and Dimensions

## 2.2 Installation Methods

**2.3 Wiring** 2.3.1 Terminals 2.3.2 Wiring Methods 2.3.3 Communication Port



## **Chapter 2.0: Installation**

#### **Before Installation**

- The installation must be performed by qualified, competent, accredited professionals who have received formal training and have experience with high voltage and current devices. Appropriate safety wear (gloves, glasses, arc flush suit, etc.) is mandatory to ensure safe installation.
- During normal meter operation, caution should be used when handling the following as high voltage may be present: Terminal Blocks, Current Transformer connection nodes, Potential Transformer connection nodes and the related circuits. All primary and secondary circuits may contain lethal current and voltage. Contact with current channels must be avoided.
- The power meter and I/O modules cannot be installed on the primary side of transformers or where VA has limitations. The power meter can be only installed on the secondary side. Avoid contact with meter terminals after the completion of installation.
- Do not input voltage above the rated maximum limit of the power meter and devices connected to it. Before energizing the meter, please refer to the meter's label and specifications.
- Do not perform high voltage test / insulation experiment to output, input, or communication terminals.
- The use of shorting blocks and fuses are recommended.
- Use dry cloth to wipe the meter.
- The installation method is introduced in the chapter. Please read this chapter carefully before beginning installation.

**Note:** Failure to follow manufacturer guidelines for installation and use may compromise the safety of the meter and the user.

**Note:** Any repair should only be performed by the manufacturer. A switch or circuit breaker should be utilized in the equipment. The switch should be placed close to the equipment and easy to reach. The switch is regarded as part of the breaking device.





### 2.1 Appearance and Dimensions





#### Dimensions

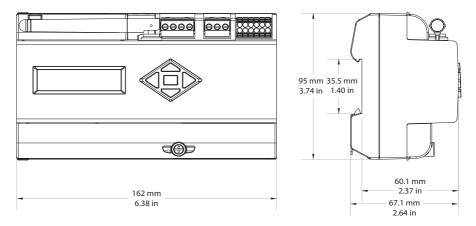



Fig.2-2 Meter Dimensions (Meter Base, Display, External CTs)





#### 2.2 Installation Methods

#### Environmental

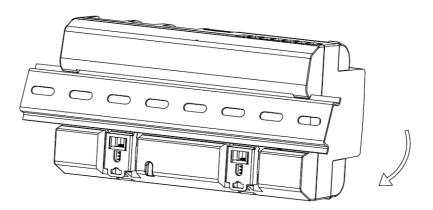
Before installation, please check the environment, temperature, and humidity to ensure the KW1850 series meter is being placed where it will not be damaged.

1. Temperature

KW1850 operating temperature is -25~70°C. Exceeding this temperature range will cause damage to the meter. Please note it can influence the meters life negatively if the meter operates in extremely high or extremely low temperatures. KW1850 storage temperature range is -40~85°C.

2. Humidity

5% to 95% non-condensing.


3. Location

KW1850 series meter should be installed in a dry and dust free environment. Avoid exposing meter to excessive heat, radiation, and high electrical noise sources.

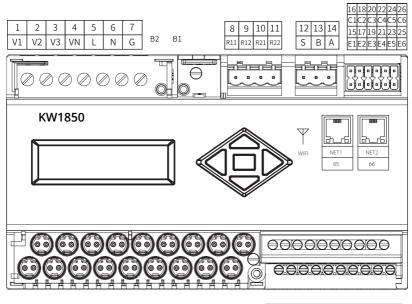
#### **Installation Steps**

This meter is DIN rail mounted, which fits 35 mm standard rails.

1. Insert the meter groove all the way into the rail, and flip the meter case as the Figure below shows, making the meter mounted onto the rail.

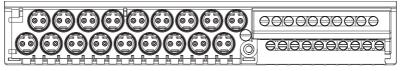







### 2.3 Wiring

### 2.3.1 Terminals


#### **Meter Terminals**

Upper row: Voltage Input, Power Supply, Seal Button (B1), Relay Output, RS485, Digital Output, Ethernet Ports (via WEB2 module)



|   | 12 | 2  | 14 |    | 16 |    | 18 | 1  | 0  | 112 | 1  | .4 | 11 | 6  | 118 | } | DIC | DI1  | DI2 | DI3  | DI4   | DI  | 5 DIE | DI   | 7 DI | 8 DI | Э    |
|---|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|-----|---|-----|------|-----|------|-------|-----|-------|------|------|------|------|
|   | 4  | 8  | 50 | )  | 52 |    | 54 | 56 | 5  | 58  | 6  | 0  | 6  | 2  | 64  |   | 27  | 28   | 29  | 30   | 31    | 32  | 33    | 34   | 1 35 | 5 3  | õ    |
|   | 1  | 13 | ;  | 15 | 5  | 17 | 1  | 9  | 11 | 1   | 13 | 11 | 5  | 11 | 7   |   | C   |      | 110 | )11C | 01120 | 013 | 01140 | 0115 | DI16 | DI17 | DI18 |
| 4 | 7  | 49 | 9  | 5  |    | 53 | 5  | 5  | 57 | 7   | 59 | 6  | 1  | 6  | 3   |   | 1   | 37 : | 38  | 39   | 40    | 41  | 42    | 43   | 44   | 45   | 46   |

Lower row: Current Input, Digital Input



|    |    |    |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |       |     |     | _    |
|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|-------|-----|-----|------|
|    | 2ا | 2  | 4 | 1  | 16 | 5  | 18 | 3  | 11 | 0  | 11 | 2  | 11 | 4  | 11 | 6  | 11 | 8 | ]   ( | DIC | DIJ | D    |
|    | 4  | 8  | 5 | 0  | 5  | 2  | 5  | 4  | 56 | ŝ  | 5  | 8  | 6  | 0  | 6  | 2  | 6  | 4 | ] [:  | 27  | 28  | 2    |
| 11 | L  | 13 |   | 15 | 5  | Г  | 7  | 19 | 9  | 11 | .1 | 11 | 3  | 11 | 5  | 11 | 7  |   | _     | C   |     | 0110 |
| 4  | 7  | 4  | 9 | 5  | 1  | 5. |    | 5  |    | 5  | 7  | 5  | 9  | 6  | 1  | 6  | 3  |   |       | 3   | 37  | 38   |

| DI | С   | D  | 1   | DI  | 2   | DI  | 3  | DI | 4  | DI | 5 | DI  | 6  | DI | 7 | DI | 8 | DI | 9  |    |
|----|-----|----|-----|-----|-----|-----|----|----|----|----|---|-----|----|----|---|----|---|----|----|----|
| 2  | 7   | 28 | 3   | 29  | 9   | 3(  | С  | 3  | 1  | 32 | 2 | 3   | 3  | 3, | 4 | 3. | 5 | 3  | 6  |    |
|    | C   | IC | D   | 110 | DI  | 111 | DI | 12 | DI | 13 | D | 114 | DI | 15 | D | 16 | D | 17 | DI | 18 |
|    | (*) | 37 | (1) | 38  | (1) | 39  | 2  | 10 | 4  | 1  | 2 | 12  | 2  | 13 | 2 | 14 | 4 | -5 | 4  | 6  |

Fig. 2-6 KW1850 Terminals





#### **Power Supply**

KW1850 power supply is 100-415Vac, 50/60Hz or 100-300Vdc, which are universally supported. If any other power supply is required, please contact the manufacturer. The power consumption of the power meter is low during normal operation; therefore, the power supply can be either via a standalone power supply or via the measured circuit. A regulator is recommended where the voltage is not stabilized. The power supply terminal number is L/N/G.

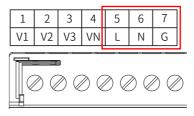



Fig. 2-7 Power Supply Wiring

Power Supply wiring is AWG22~16 or 0.6~1.5mm<sup>2</sup>.

A fuse or small-sized circuit breaker is mandatory for the KW1850 Power Supply. The fuse recommendation is 1A/250Vac, time delay. If a circuit breaker is utilized, it must be CE certified and comply with IEC 947 standard.

An isolated transformer or EMC filter should be used in the auxiliary power supply loop if there is a power quality issue in the power supply.

#### **Voltage Input Signal**

400Vac L-N, 690Vac L-L.A fuse (typical 1A/250Vac) or air circuit breaker must be used in the voltage input loop.

#### **Current Input Connection**

For CT Connection, the CTs are terminated and plugged directly into the meter using connectors on the CT. If the CT does not have this connector an adapter can be used to connect the CT successfully to the meter.

|               | SnapOn Connector Polarity                       |
|---------------|-------------------------------------------------|
| North America | White lead is positive. Black lead is negative. |
| International | Red lead is positive. White lead is negative.   |





#### **Vn Connection**

Vn is the voltage reference point of KW1850, a low resistance to Vn connection contributes to a better measurement accuracy. Vn connection is related to the system wiring. Please refer to "Wiring Methods" for details.

#### 2.3.2 Wiring Methods

KW1850 wiring methods can be selected in system parameter settings. Inline defaults to 3-phase 4-line(3LN), load wiring can be set to single-phase (1LN), threephase four-wire (3LN), single-phase three-wire (2LN).

#### 1. Single Phase (1LN)

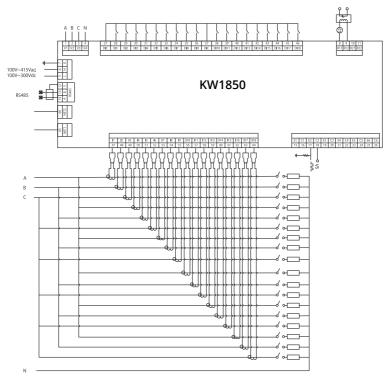



Fig. 2-8 Single Phase





#### 2. Three Phase 4 Wire (3LN)

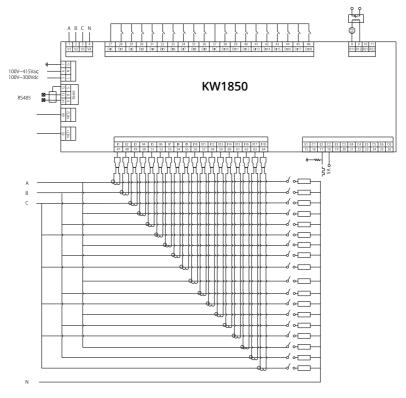





Table 2-1 3-Phase 4-Wire

|         | Three Phase<br>Circuit 1 | Three Phase<br>Circuit 2 | Three Phase<br>Circuit 3 | Three Phase<br>Circuit 4 | Three Phase<br>Circuit 5 | Three Phase<br>Circuit 6 |
|---------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Phase C | 13                       | 16                       | 19                       | 112                      | l15                      | 118                      |
| Phase B | 12                       | 15                       | 18                       | 111                      | 114                      | 117                      |
| Phase A | 11                       | 14                       | 17                       | 110                      | 113                      | 116                      |





### 3. Single Phase 3 Wire (2LN)

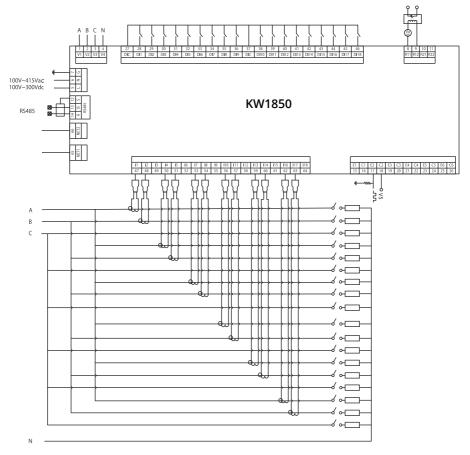



Fig. 2-10 Single Phase 3-Wire





| Circuit                           | Phase A | Phase B |
|-----------------------------------|---------|---------|
| Single Phase Three Wire Circuit 6 | 16      | 17      |
| Single Phase Three Wire Circuit 5 | 13      | 14      |
| Single Phase Three Wire Circuit 4 | 10      | 11      |
| Single Phase Three Wire Circuit 3 | 7       | 8       |
| Single Phase Three Wire Circuit 2 | 4       | 5       |
| Single Phase Three Wire Circuit 1 | 1       | 2       |

Table 2-2 Single Phase Three Wire (2 Hot Phases - 1 Neutral)

#### 2.3.3 Communication Port

KW1850 communication utilizes RS485 port, via Modbus-RTU protocol. The wiring terminals are A, B, S (14, 13, 12), where **A** is positive, **B** is negative, and **S** is the shield terminal. The maximum distance of shielded twisted pair cable is 1200 m.

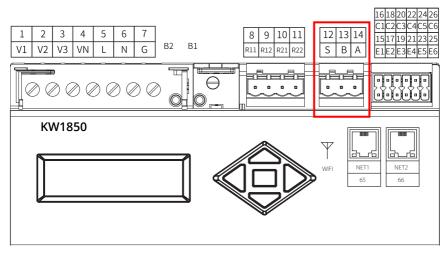



Figure 2-11 Communication Port



If the master device does not have RS485 but RS232 port, a RS232/485 converter can be utilized. Typical RS485 network topologies include line, circle and star (wye).

In order to improve communication quality, please pay attention to:

- 1. High-quality shielded twisted pair cable is very important, AWG22 (0.6mm<sup>2</sup>) or lower is recommended. Two cables should be different colors.
- 2. Pay attention to "single point earthing". It means there is only one point of the shielding connected to ground in a single communication link.
- 3. Every A (+) should be connected to A(+), B(-) to B(-), or it will influence the network, even damage the communication interface.
- 4. "T" type connection topology should be avoided. This means no new branches except from the starting point.
- 5. Keep communication cables away as much as possible from sources of electrical noise. When several devices are connected (daisy chain) to the same long communication line, an anti-signal reflecting resistor (typical value 1200-3000 $\Omega$ , 0.25W) is often used at the end of the circuit (the last meter of the chain) if the communication quality is distorted.
- 6. Use RS232/RS485 or USB/RS485 converter with optical isolated output and surge protection.





KW1850 Smart Metering System

## **Chapter 3: Appearance & Dimensions**

3.1 Display Panels and Keys

**3.2 Energy Display and Operation** 

**3.3 Demand Display and Operation** 

**3.4 IO Display and Operations** 

3.5 Real-Time Display and Key Operation

3.6 Power Quality Display and Key Operation

3.7 Shortcut Code

**3.8 Basic Settings and Key Operation** 

**3.9 Network Settings** 

3.10 Device Information and Key Operation

## **Chapter 3.0: Appearance & Dimensions**

## 3.1 Display Panels and Keys

The KW1850 meter consists of one LCD screen and five keys. Refer to chapter 2 section 2.1 for more details regarding the dimensions of the LCD display.

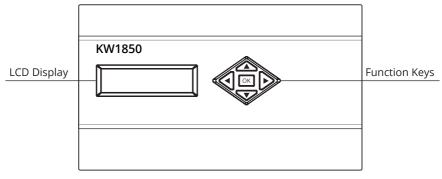



Fig. 3-1 KW1850 and LED Indicator

| Кеу |       | Function                                        |
|-----|-------|-------------------------------------------------|
|     | Up    | Scroll up or increase value<br>(Editing mode)   |
|     | Down  | Scroll down or decrease<br>value (Editing mode) |
|     | Left  | Move cursor to the left                         |
|     | Right | Move cursor to the right                        |
| ОК  | ОК    | Confirm setting/value                           |





#### **Key Combination**

Pressing the **Left** and **Right** buttons at the same time for a second is the quick exit function. In any screen, pressing this key combination can return to the main menu screen. The basic settings and network setting screens are only available with this key combination to return back to the main menu screen.

#### Display

When first powered on the **ACI** will be displayed on the LCD screen, after 2 seconds the main menu screen will appear.

#### **Settings Mode**

In the main menu screen, users can use the arrow keys to navigate to different options and use the **OK** button to enter any of the menu options. When entering either the **Settings** or **Network Settings** options users will be prompted with a password screen. The default password is **0000**, if password has been changed users can use the arrow keys to enter in the required password. Table 3-2 below shows the main menu options for the KW1850 meter.

| Menu Display    | Function                      |
|-----------------|-------------------------------|
| D (Demand)      | Demand Readings               |
| INFO            | Device Information            |
| IO              | Digital Input/Output Readings |
| E (Energy)      | Energy Readings               |
| SET             | Meter Settings                |
| NET             | Network Settings              |
| PQ              | Power Quality Readings        |
| MUL (Real-Time) | Real-Time Readings            |
| М               | Shortcut Code                 |

#### Table 3-2 KW1850 Main Menu





By default only the E, D, IO, MUL, and M options are displayed on main menu screen. To view the PQ, SET, NET, and INFO options press either the Right or Left arrow keys to scroll to these options.



Fig. 3-2 Main menu screen sequence

## 3.2 Energy Display and Operation

On the main menu screen move the cursor over to **E** and press **OK** to enter to view the energy readings for the meter. Use the **Left** or **Right** buttons to move between the different channels (1-18) as well as the in-line (meter total) energy. Press the **Up** and **Down** buttons to select the different energy readings for each channel/tenant. Users can press **OK** to return to the main menu screen.

If TOU energy is not used, the meter will only display real-time energy readings.

| Parameter                     | Screen |
|-------------------------------|--------|
| Apparent Energy               | ES     |
| Current Month Total Energy    | MTnS   |
| Current Month Tariff 1 Energy | MT1S   |
| Current Month Tariff 2 Energy | MT2S   |
| Current Month Tariff 3 Energy | MT3S   |
| Current Month Tariff 4 Energy | MT4S   |
| Prior Month Tariff 1 Energy   | UT1S   |
| Prior Month Tariff 2 Energy   | UT2S   |
| Prior Month Tariff 3 Energy   | UT3S   |
| Prior Month Tariff 4 Energy   | UT4S   |
| Reactive Energy               | EQ     |
| Real-Time Energy              | EP     |

#### Table 3-3 Energy Display





1. Single Phase 1 Wire (1LN)

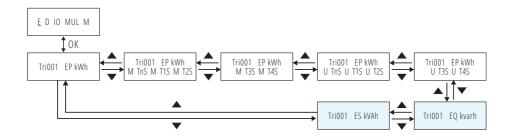



Fig. 3-3 Single Phase 1 Wire Energy Display

2. Three Phase 4 Wire (3LN)

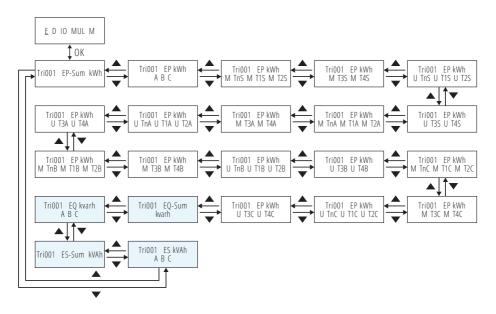



Fig. 3-4 Three Phase 4 Wire Energy Display





#### 3. Single Phase 3 Wire (2LN)

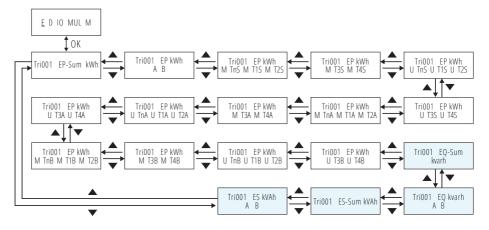



Fig. 3-5 Single Phase 3 Wire Energy Display

### 3.3 Demand Display and Operation

On the main menu use the arrow keys to navigate to **D**, then press **OK** to view the meters demand readings. Using the **Left** and **Right** buttons to move between the different channels (1-18) as well as the in-line (meter total) demand. Use the **Up** and **Down** keys to view the different demand readings for each channel. Users can press the **OK** button to return to the main menu.

#### Table 3-4 Demand Display

| Parameter        | Display |
|------------------|---------|
| Demand           | DMD     |
| Active Demand    | DMD-P   |
| Reactive Demand  | DMD-Q   |
| Apparent Demand  | DMD-S   |
| Current Demand   | DMD-I   |
| Predicted Demand | Pre     |
| Maximum Demand   | Max     |

For different wiring configurations, the demand data display will be different:





1. Single Phase 1 Wire (1LN)

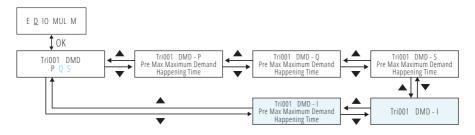



Fig. 3-5 Single Phase 1 Wire Demand Display

2. Single Phase 4 Wire (3LN)

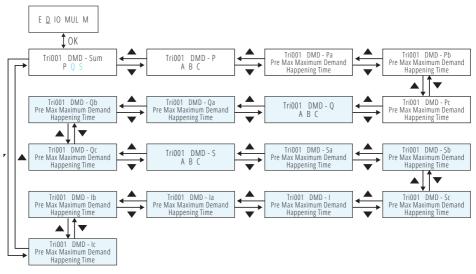



Fig. 3-6 Single Phase 4 Wire Demand Display





3. Single Phase 3 Wire (2LN)

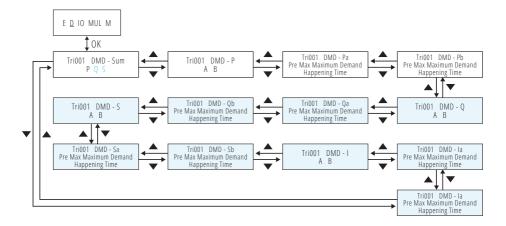



Fig. 3-7 Single Phase 3 Wire Demand Display

## 3.4 IO Display and Operations

On the main menu use the arrow keys to navigate to **IO** and then press the **OK** to view the IO data. Use the **Up** and **Down** buttons to view different IO readings. Users can press the **OK** button to return to the main menu.

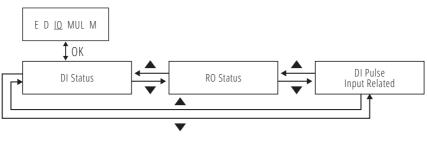



Fig. 3-8 IO Display



1st Screen includes DI Status channels 1-10, and the second screen includes channels 11-18.

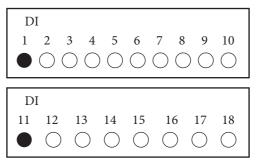



Fig. 3-9 Digital Input Status Display



### indicates this channel DI status "OFF" or Pulse Input



indicates DI Status "ON"

3rd Screen, RO Status, 2-Channel RO.

| RO                 |  |  |
|--------------------|--|--|
| 1 2                |  |  |
| $\bullet \bigcirc$ |  |  |

Fig. 3-10 Relay Output Display



indicates this channel RO status "OFF"



indicates this RO Status "ON"





PULS CONT x x PCS x.xx yy

4th Screen, DI pulse input number and its parameter. Pressing Left and Right to view channels 1-18.

Fig. 3-10 DI Pulse Input Display

**CONT X** = DI Channel number

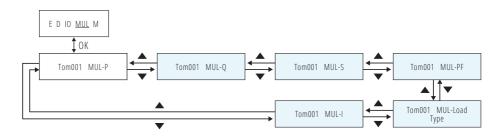
**PCS** = Pulse Count

yy = Scaled Value

### 3.5 Real-Time Display and Key Operation

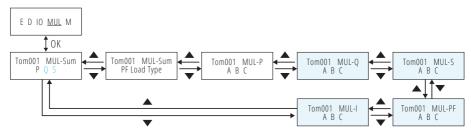
On the main menu use the arrow keys to navigate to **MUL** (Real-time) and press the **OK** button to view the real time parameter readings for the meter. Use the **Left** and **Right** buttons to move between different channels (1-18) as well as the inline parameters (meter total). Use the **Up** and **Down** buttons to scroll between the different real time parameters. Users can press the **OK** button to return to the main menu.

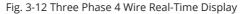
| Parameter               | Display |
|-------------------------|---------|
| Total Time              | MUL-Sum |
| Active Power            | MUL-P   |
| Reactive Power          | MUL-Q   |
| Apparent Power          | MUL-S   |
| Real-Time Current Value | MUL-I   |
| Power Factor            | MUL-PF  |


Table 3-5 Real Time Data Display



| Parameter             | Display       |
|-----------------------|---------------|
| Load Type             | MUL-Load Type |
| Phase Voltage         | MUL-Phase U   |
| Phase Average Voltage | Uavg          |
| Line Voltage          | MUL-Line U    |
| Line Voltage Average  | Ulavg         |


For different wiring configurations, the real time data display will be different:


#### 1. Single Phase 2-Wire (1LN)





#### 2. Three Phase 4-Wire (3LN)









#### 3. Single Phase 3-Wire (2LN)

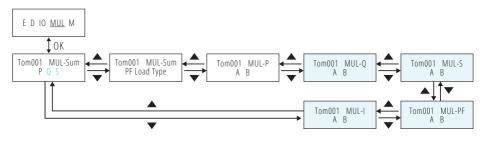



Fig. 3-13 Single Phase 3 Wire Real-Time Display

#### 4. 4-Wire Inline

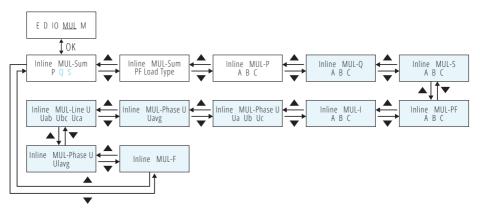



Fig. 3-14 Inline Real-Time Display

### 3.6 Power Quality Display and Key Operation

In the second page of the main menu, use the arrow keys to navigate to **PQ** and press **OK** to view the power quality readings of the meter. Use the **Left** and **Right** buttons to move between different channels (1-18) as well as the inline values. Use the **Up** and **Down** buttons to view different power quality parameters. Users can press the **OK** button to return to the main menu.





Table 3-6 Power Quality Data Display

| Parameter                        | Display      |
|----------------------------------|--------------|
| Unbalance                        | UNBL         |
| Harmonic Distortion              | THD          |
| Total Harmonic Distortion        | SUM          |
| Odd Harmonic Distortion          | ODD          |
| Even Harmonic Distortion         | EVEN         |
| K-Factor                         | K-Factor     |
| Crest Factor                     | Crest Factor |
| Telephone<br>Interference Factor | THFF         |
| Harmonic Ratio                   | HARMONIC     |

#### 1. Single Phase 1-Wire (1LN)

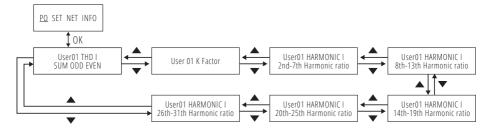



Fig. 3-15 Single Phase Power Quality





2. Three Phase 4-Wire (3LN)

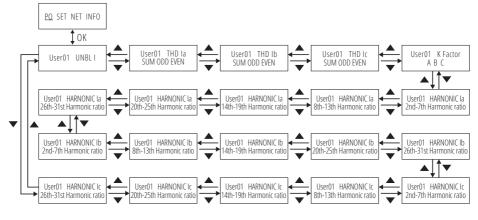



Fig. 3-16 Three Phase 4 Wire Power Quality

3. Single Phase 3-Wire (2LN)

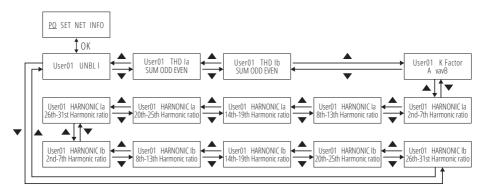



Fig. 3-17 Singe Phase 3 Wire Power Quality





#### 4. Inline

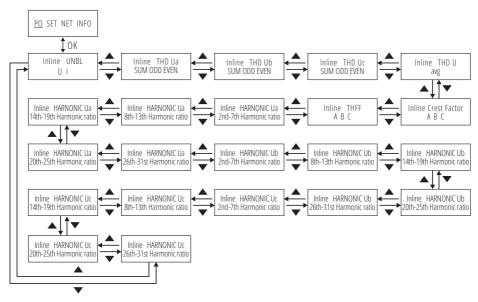



Fig. 3-18 Inline Power Quality

### 3.7 Shortcut Code

The KW1850 supports a shortcut code that allows users to enter the code for a certain parameter and this parameter will be displayed on screen. Users can use this function if looking for a particular parameter rather than scrolling through the many screens in order to find it. On the main menu page use the arrow keys to navigate to **M** and press the **OK** to enter the Shortcut Key page.





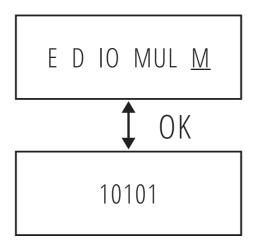



Fig. 3-19 Shortcut Code

Press the **Left** and **Right** buttons to move the cursor over to different digits. Press the **Up** and **Down** buttons to change the value of the digit. After inputting the Shortcut Code, press **OK** to enter the corresponding page.

The Shortcut Code consists of five digits. The first digit on the left is to choose functions. The following tables provide the shortcut code to all the available parameters supported on the KW1850 meter.

Table 3-7 Short Cut Code First Digit Representation

| Function                     | Shortcut |
|------------------------------|----------|
| Energy Measurement           | 1        |
| Demand Measurement           | 2        |
| Digital Input Digital Output | 3        |
| Real-Time Measurement        | 4        |
| Power Quality                | 5        |

36



1. Single Phase 1-Wire (1LN):

Table 3-8 Single Phase 1-Wire Shortcut Code

| Function                               | User | Screen Number | Code        | Content                                                                                  |
|----------------------------------------|------|---------------|-------------|------------------------------------------------------------------------------------------|
|                                        |      | 1             | 10101-10118 | Real-time energy                                                                         |
|                                        |      | 2             | 10201-10218 | This month total energy, this<br>month tariff 1 energy, this month<br>tariff 2 energy    |
| Energy                                 |      | 3             | 10301-10318 | This month tariff 3 energy, this month tariff 4 energy                                   |
| (No TOU,<br>only Real-<br>time Energy) | 1-8  | 4             | 1-18        | Prior month total energy, prior<br>month tariff 1 energy, prior<br>month tariff 2 energy |
|                                        |      | 5             | 10501-10518 | Prior month tariff 3 energy, prior<br>month tariff 4 energy                              |
|                                        |      | 6             | 10601-10618 | Reactive energy                                                                          |
|                                        |      | 7             | 10701-10718 | Apparent energy                                                                          |
|                                        |      | 1             | 20101-20118 | Real power demand, reactive power demand, apparent power demand                          |
|                                        | 1-18 | 2             | 20201-20218 | Real power demand prediction,<br>real power demand peak and<br>happening time            |
| Demand                                 |      | 3             | 20301-20318 | Reactive power demand prediction,<br>reactive power demand peak<br>and happening time    |
|                                        |      | 4             | 20401-20418 | Apparent power demand<br>prediction, apparent power<br>demand peak and happening time    |
|                                        |      | 5             | 20501-20518 | Current demand                                                                           |
|                                        |      | 6             | 20601-20618 | Current demand prediction, current demand peak and happening time                        |





| Digital Input    | DI             | 1           | 30101-30108                    | DI status                                                                    |
|------------------|----------------|-------------|--------------------------------|------------------------------------------------------------------------------|
| Digital          | igital Channel | 2           | 30201-30208                    | RO status                                                                    |
| Output           | 1-8            | 3           | 30301-30308                    | DI pulse input related                                                       |
|                  |                | 1           | 40101-40118                    | Real power                                                                   |
|                  |                | 2           | 40201-40218                    | Reactive power                                                               |
| Real-time        | 1-18           | 3           | 40301-40318                    | Apparent power                                                               |
| Real-time        | 1-18           | 4           | 40401-40418                    | Power factor                                                                 |
|                  |                | 5           | 40501-40518                    | Load type                                                                    |
|                  |                | 6           | 40601-40618                    | Current                                                                      |
|                  |                | 1           | 50101-50118                    | Harmonic distortion, odd<br>Harmonic distortion, even<br>Harmonic distortion |
|                  |                | 2           | 50201-50218                    | Current K-factor                                                             |
|                  |                | 3           | 50301-50318                    | Harmonic of current<br>(2-7)                                                 |
| Power<br>Quality | 1-18           | 4           | 50401-50418                    | Harmonic of current<br>(8-13)                                                |
|                  |                | 5           | 50501-50518                    | Harmonic of current<br>(14-19)                                               |
|                  |                | 6           | 50601-50618                    | Harmonic of current<br>(20-25)                                               |
|                  | 7              | 50701-50718 | Harmonic of current<br>(26-31) |                                                                              |





2. Three Phase 4-Wire (3LN):

Table 3-9 Three Phase 4-Wire Shortcut Code

| Function               | User | Screen Number | Code        | Content                                                                                                       |             |                                                                           |  |   |
|------------------------|------|---------------|-------------|---------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|--|---|
| Energy                 | 1-18 | 1             | 12101-12118 | Total real energy                                                                                             |             |                                                                           |  |   |
| (No TOU,<br>only Real- |      | 2             | 12201-12218 | Phase A,B,C real energy                                                                                       |             |                                                                           |  |   |
| time Energy)           |      | 3             | 12301-12318 | This month total power-sharing,<br>this month tariff 1 energy, this<br>month tariff 2 energy                  |             |                                                                           |  |   |
|                        |      | 4             | 12401-12418 | This month tariff 3 energy, this month tariff 4 energy                                                        |             |                                                                           |  |   |
|                        |      | 5             | 12501-12518 | Prior month total power sharing,<br>prior month tariff 1 energy, prior<br>month tariff 2 energy               |             |                                                                           |  |   |
|                        |      | 6             | 12601-12618 | Prior month tariff 3 energy, prior<br>month tariff 2 energy                                                   |             |                                                                           |  |   |
|                        |      | 7             | 12701-12718 | Phase A this month total power-<br>sharing                                                                    |             |                                                                           |  |   |
|                        |      |               |             |                                                                                                               |             | Phase A this month tariff 1 energy,<br>Phase A this month tariff 2 energy |  |   |
|                        |      |               |             | 8                                                                                                             | 12801-12818 | Phase A this month tariff 3 energy,<br>Phase A this month tariff 4 energy |  |   |
|                        |      |               |             |                                                                                                               |             |                                                                           |  | 9 |
|                        |      | 10            | 13001-13018 | Phase A prior month tariff 3<br>energy, Phase A prior month<br>tariff 4 energy                                |             |                                                                           |  |   |
|                        |      | 11            | 13101-13118 | Phase B this month total energy,<br>Phase B this month tariff 1 energy,<br>Phase B this month tariff 2 energy |             |                                                                           |  |   |



|  | 12 | 13201-13218 | Phase B this month tariff 3 energy,<br>Phase B this month tariff 4 energy                                           |
|--|----|-------------|---------------------------------------------------------------------------------------------------------------------|
|  | 13 | 13301-13318 | Phase B prior month total<br>energy, Phase B prior month<br>tariff 1 energy, Phase B prior<br>month tariff 2 energy |
|  | 14 | 13401-13418 | Phase B prior month tariff 3<br>energy, Phase B prior month<br>tariff 4 energy                                      |
|  | 15 | 13501-13518 | Phase C this month total energy,<br>Phase C this month tariff 1 energy,<br>Phase C this month tariff 2 energy       |
|  | 16 | 13601-13618 | Phase C this month tariff 3 energy,<br>Phase C this month tariff 4 energy                                           |
|  | 17 | 13701-13718 | Phase C prior month total<br>energy, Phase C prior month<br>tariff 1 energy, Phase C prior<br>month tariff 2 energy |
|  | 18 | 13801-13818 | Phase C prior month tariff 3<br>energy, Phase C prior month<br>tariff 4 energy                                      |
|  | 19 | 13901-13918 | Total reactive energy                                                                                               |
|  | 20 | 14001-14018 | Phase A, B, C reactive energy                                                                                       |
|  | 21 | 14101-14118 | Total apparent energy                                                                                               |
|  | 22 | 14201-14218 | Phase A, B, C apparent energy                                                                                       |





## Chapter 3: Appearance & Dimensions

| Function | User | Screen Number | Code        | Content                                                                                             |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|----------|------|---------------|-------------|-----------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|--|--|---|-------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Demand   | 1-18 | 1             | 22101-22118 | System active power demand,<br>system reactive power demand,<br>system apparent power demand        |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 2             | 22201-22218 | Phase A, B, C active<br>power demand                                                                |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 3             | 22301-22318 | Phase A real power demand<br>prediction, Phase A real power<br>demand peak and load time            |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 4             | 22401-22418 | Phase B real power demand<br>prediction, Phase B real power<br>demand peak and load time            |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 5             | 22501-22518 | Phase C real power demand<br>prediction, Phase C real power<br>demand peak and load time            |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 6             | 22601-22618 | Phase A, B, C reactive<br>power demand                                                              |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      |               |             | 7                                                                                                   | 22701-22718 | Phase A reactive power demand<br>prediction, Phase A reactive power<br>demand peak and load time |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      |               |             |                                                                                                     |             |                                                                                                  |  |  | 8 | 22801-22818 | Phase B reactive power demand<br>prediction, Phase B reactive power<br>demand peak and load time |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      |               |             |                                                                                                     |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 10            | 23001-23018 | Phase A, B, C apparent power<br>demand                                                              |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|          |      | 11            | 23101-23118 | Phase A apparent power<br>demand prediction, Phase A<br>apparent power demand peak<br>and load time |             |                                                                                                  |  |  |   |             |                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





| Function      | User    | Screen Number | Code        | Content                                                                                          |
|---------------|---------|---------------|-------------|--------------------------------------------------------------------------------------------------|
|               |         | 12            | 23201-23218 | Phase B apparent power demand<br>prediction, Phase B apparent power<br>demand peak and load time |
|               |         | 13            | 23301-23318 | Phase C apparent power demand<br>prediction, Phase C apparent power<br>demand peak and load time |
|               |         | 14            | 23401-23418 | Phase A, B, C current demand                                                                     |
|               |         | 15            | 23501-23518 | Phase A current demand<br>prediction, Phase A current<br>demand peak and load time               |
|               |         | 16            | 23601-23618 | Phase B current demand<br>prediction, Phase B current<br>demand peak and load time               |
|               |         | 17            | 23701-23718 | Phase C current demand<br>prediction, Phase C current<br>demand peak and load time               |
| Digital Input | DI      | 1             | 30101-30108 | DI status                                                                                        |
| Digital       | Channel | 2             | 30201-30208 | RO status                                                                                        |
| Output        | 1-8     | 3             | 30301-30308 | DI pulse input related                                                                           |
|               |         | 1             | 42101-42118 | Total active power, total reactive power, total apparent power                                   |
|               |         | 2             | 42201-42218 | Total power factor, total load type                                                              |
|               |         | 3             | 42301-42318 | Phase A, B, C active power                                                                       |
| Real-time     | 1-18    | 4             | 42401-42418 | Phase A, B, C reactive power                                                                     |
|               |         | 5             | 42501-42518 | Phase A, B, C apparent power                                                                     |
|               |         | 6             | 42601-42618 | Phase A, B, C power factor                                                                       |
|               |         | 7             | 42701-42718 | Phase A, B, C current                                                                            |





## Chapter 3: Appearance & Dimensions

| Function | User | Screen Number | Code        | Content                                                                              |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|----------|------|---------------|-------------|--------------------------------------------------------------------------------------|----------------------------------------|--|----|-------------|----------------------------------------|--|--|--|--|--|--|----|-------------|---------------------------------------|--|--|--|----|-------------|--------------------------------------|
| Power    | 1-18 | 1             | 52101-52118 | Current unbalance                                                                    |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
| Quality  |      | 2             | 52201-52218 | Phase A harmonic distortion,<br>odd harmonic distortion, even<br>harmonic distortion |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      | 3             | 52301-52318 | Phase B harmonic distortion,<br>odd harmonic distortion, even<br>harmonic distortion |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      | 4             | 52401-52418 | Phase C harmonic distortion,<br>odd harmonic, even harmonic<br>distortion            |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      | 5             | 52501-52518 | Current K-factor                                                                     |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      | 6             | 52601-52618 | Harmonic of Phase A current<br>(2-7)                                                 |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      | 7             | 52701-52718 | Harmonic of Phase A current<br>(8-13)                                                |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      |               | 8           | 52801-52818                                                                          | Harmonic of Phase A current<br>(14-19) |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      |               | 9           | 52901-52918                                                                          | Harmonic of Phase A current<br>(20-25) |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      |               |             |                                                                                      |                                        |  | 10 | 53001-53018 | Harmonic of Phase A current<br>(26-31) |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      |               |             |                                                                                      |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  | 11 | 53101-53118 | Harmonic of Phase B current<br>(2-7) |
|          |      |               |             |                                                                                      |                                        |  |    |             |                                        |  |  |  |  |  |  | 12 | 53201-53218 | Harmonic of Phase B current<br>(8-13) |  |  |  |    |             |                                      |
|          |      | 13            | 53301-53318 | Harmonic of Phase B current<br>(14-19)                                               |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |
|          |      | 14            | 53401-53418 | Harmonic of Phase B current<br>(20-25)                                               |                                        |  |    |             |                                        |  |  |  |  |  |  |    |             |                                       |  |  |  |    |             |                                      |



| Function | User | Screen Number | Code        | Content                                |
|----------|------|---------------|-------------|----------------------------------------|
|          |      | 15            | 53501-53518 | Harmonic of Phase B current<br>(26-31) |
|          |      | 16            | 53601-53618 | Harmonic of Phase C current<br>(2-7)   |
|          |      | 17            | 53701-53718 | Harmonic of Phase C current<br>(8-13)  |
|          |      | 18            | 53801-53818 | Harmonic of Phase C current<br>(14-19) |
|          |      | 19            | 53901-53918 | Harmonic of Phase C current<br>(20-25) |
|          |      | 20            | 54001-54018 | Harmonic of Phase C current<br>(26-31) |

### 3. Single Phase 3-Wire (2LN):

#### Table 3-10 Single Phase 3-Wire Shortcut Code

| Function               | User | Screen Number | Code        | Content                                                                                         |
|------------------------|------|---------------|-------------|-------------------------------------------------------------------------------------------------|
| Energy (No             | 1-18 | 1             | 16101-16118 | Real-time energy                                                                                |
| TOU, only<br>Real-Time |      | 2             | 16201-16218 | Phase A, B real-time energy                                                                     |
| Energy)                |      | 3             | 16301-16318 | This month total power sharing,<br>this month tariff 1 energy, this<br>month tariff 2 energy    |
|                        |      | 4             | 16401-16418 | This month tariff 3 energy, this month tariff 4 energy                                          |
|                        |      | 5             | 16501-16518 | Prior month total power-sharing,<br>prior month tariff 1 energy, prior<br>month tariff 2 energy |
|                        |      | 6             | 16601-16618 | Prior month tariff 3 energy, prior<br>month tariff 4 energy                                     |

44



## Chapter 3: Appearance & Dimensions

| Function | User | Screen Number | Code        | Content                                                                                                             |
|----------|------|---------------|-------------|---------------------------------------------------------------------------------------------------------------------|
|          |      | 7             | 16701-16718 | Phase A this month total energy,<br>Phase A this month tariff 1 energy,<br>Phase A this month tariff 2 energy       |
|          |      | 8             | 16801-16818 | Phase A this month tariff 3 energy,<br>Phase A this month tariff 4 energy                                           |
|          |      | 9             | 16901-16918 | Phase A prior month total energy,<br>Phase A prior month tariff 1 energy,<br>Phase A prior month tariff 2 energy    |
|          |      | 10            | 17001-17018 | Phase A prior month tariff 3 energy,<br>Phase A prior month tariff 4 energy                                         |
|          |      | 11            | 17101-17118 | Phase B this month total energy,<br>Phase B this month tariff 1 energy,<br>Phase B this month tariff 2 energy       |
|          |      | 12            | 17201-17218 | Phase B this month tariff 3<br>energy, Phase B this month tariff<br>4 energy                                        |
|          |      | 13            | 17301-17318 | Phase B prior month total<br>energy, Phase B prior month<br>tariff 1 energy, Phase B prior<br>month tariff 2 energy |
|          |      | 14            | 17401-17418 | Phase B prior month tariff 3 energy,<br>Phase B prior month tariff 4 energy                                         |
|          |      | 15            | 17501-17518 | Total reactive energy                                                                                               |
|          |      | 16            | 17601-17618 | Phase A, B reactive energy                                                                                          |
|          |      | 17            | 17701-17718 | Total apparent energy                                                                                               |
|          |      | 18            | 17801-17818 | Phase A, B apparent energy                                                                                          |





| Function | User | Screen Number | Code        | Content                                                                                          |  |  |   |             |                                  |
|----------|------|---------------|-------------|--------------------------------------------------------------------------------------------------|--|--|---|-------------|----------------------------------|
|          |      | 1             | 26101-26118 | System active power demand,<br>system reactive power demand,<br>system apparent power demand     |  |  |   |             |                                  |
|          |      | 2             | 26201-26218 | Phase A, B active power demand                                                                   |  |  |   |             |                                  |
|          |      | 3             | 26301-26318 | Phase A real power demand<br>prediction, Phase A real power<br>demand peak and load time         |  |  |   |             |                                  |
|          |      | 4             | 26401-26418 | Phase B real power demand<br>prediction, Phase B real power<br>demand peak and load time         |  |  |   |             |                                  |
|          |      | 5             | 26501-26518 | Phase A, B reactive power demand                                                                 |  |  |   |             |                                  |
|          |      | 6             | 26601-26618 | Phase A reactive power demand<br>prediction, Phase A reactive power<br>demand peak and load time |  |  |   |             |                                  |
| Demand   | 1-18 | 7             | 26701-26718 | Phase B reactive power demand<br>prediction, Phase B reactive power<br>demand peak and load time |  |  |   |             |                                  |
|          |      |               |             |                                                                                                  |  |  | 8 | 26801-26818 | Phase A, B apparent power demand |
|          |      | 9             | 26901-26918 | Phase A apparent power demand<br>prediction, Phase A apparent power<br>demand peak and load time |  |  |   |             |                                  |
|          |      | 10            | 27001-27018 | Phase B apparent power demand<br>prediction, Phase B apparent power<br>demand peak and load time |  |  |   |             |                                  |
|          |      | 11            | 27101-27118 | Phase A, B current demand                                                                        |  |  |   |             |                                  |
|          |      | 12            | 27201-27218 | Phase A current demand<br>prediction, Phase A current<br>demand peak and load time               |  |  |   |             |                                  |
|          |      | 13            | 27301-27318 | Phase B current demand<br>prediction, Phase B current<br>demand peak and load time               |  |  |   |             |                                  |



# Chapter 3: Appearance & Dimensions

| Function      | User    | Screen Number | Code        | Content                                                                              |
|---------------|---------|---------------|-------------|--------------------------------------------------------------------------------------|
| Digital Input | DI      | 1             | 30101-30108 | DI status                                                                            |
| Digital       | Channel | 2             | 30201-30208 | RO status                                                                            |
| Output        | 1-8     | 3             | 30301-30308 | DI pulse input related                                                               |
|               |         | 1             | 46101-46118 | Total active power, total reactive power, total apparent power                       |
|               |         | 2             | 46201-46218 | Total power factor, total load type                                                  |
|               |         | 3             | 46301-46318 | Phase A, B active power                                                              |
| Real-time     | 1-18    | 4             | 46401-46418 | Phase A, B reactive power                                                            |
|               |         | 5             | 46501-46518 | Phase A, B apparent power                                                            |
|               |         | 6             | 46601-46618 | Phase A, B power factor                                                              |
|               |         | 7             | 46701-46718 | Phase A, B current                                                                   |
| Power         | 1-18    | 1             | 56101-56118 | Current unbalance                                                                    |
| Quality       |         | 2             | 56201-56218 | Phase A harmonic distortion,<br>odd harmonic distortion, even<br>harmonic distortion |
|               |         | 3             | 56301-56318 | Phase B harmonic distortion,<br>odd harmonic distortion, even<br>harmonic distortion |
|               |         | 4             | 56401-56418 | Current K-factor                                                                     |
|               |         | 5             | 56501-56518 | Harmonic of Phase A current<br>(2-7)                                                 |
|               |         | 6             | 56601-56618 | Harmonic of Phase A current<br>(8-13)                                                |
|               |         | 7             | 56701-56718 | Harmonic of Phase A current<br>(14-19)                                               |





| Function | User | Screen Number | Code        | Content                                |
|----------|------|---------------|-------------|----------------------------------------|
|          |      | 8             | 56801-56818 | Harmonic of Phase A current<br>(20-25) |
|          |      | 9             | 56901-56918 | Harmonic of Phase A current<br>(26-31) |
|          |      | 10            | 57001-57018 | Harmonic of Phase B current<br>(2-7)   |
|          |      | 11            | 57101-57118 | Harmonic of Phase B current<br>(8-13)  |
|          |      | 12            | 57201-57218 | Harmonic of Phase B current<br>(14-19) |
|          |      | 13            | 57301-57318 | Harmonic of Phase B current<br>(20-25) |
|          |      | 14            | 57401-57418 | Harmonic of Phase B current<br>(26-31) |





48

4. Energy Inline (Meter Total)

Table 3-11 Energy Inline Shortcut Code

| Function               | User   | Screen Number | Code  | Content                                                                                                          |
|------------------------|--------|---------------|-------|------------------------------------------------------------------------------------------------------------------|
| Energy                 | Inline | 1             | 10100 | System active energy                                                                                             |
| (No TOU,<br>only Real- |        | 2             | 10200 | Phase A, B, C active energy                                                                                      |
| time Energy)           |        | 3             | 10300 | System this month total energy,<br>system this month tariff 1 energy,<br>system this month tariff 2 energy       |
|                        |        | 4             | 10400 | System this month tariff 3 energy, system this month tariff 4 energy                                             |
|                        |        | 5             | 10500 | System prior month total energy,<br>system prior month tariff 1 energy,<br>system prior month tariff 2 energy    |
|                        |        | 6             | 10600 | System prior month tariff 3 energy, system prior month tariff 4 energy                                           |
|                        |        | 7             | 10700 | Phase A this month tariff 3 energy,<br>Phase A this month tariff 1 energy,<br>Phase A this month tariff 2 energy |
|                        |        | 8             | 10800 | Phase A this month tariff 3 energy,<br>Phase A this month tariff 4 energy                                        |
|                        |        | 9             | 10900 | Phase A prior month total energy,<br>Phase A prior month tariff 1 energy,<br>Phase B this month tariff 2 energy  |
|                        |        | 10            | 11000 | Phase A prior month tariff 3 energy,<br>Phase A prior month tariff 4 energy                                      |
|                        |        | 11            | 11100 | Phase B this month total energy,<br>Phase B this month tariff 1 energy,<br>Phase B this month tariff 2 energy    |
|                        |        | 12            | 11200 | Phase B this month tariff 3 energy,<br>Phase B this month tariff 4 energy                                        |



| Function | User | Screen Number | Code  | Content                                                                                                          |
|----------|------|---------------|-------|------------------------------------------------------------------------------------------------------------------|
|          |      | 13            | 11300 | Phase B prior month total energy,<br>Phase B prior month tariff 1 energy,<br>Phase B prior month tariff 2 energy |
|          |      | 14            | 11400 | Phase B prior month tariff 3 energy,<br>Phase B prior month tariff 4 energy                                      |
|          |      | 15            | 11500 | Phase C this month total energy,<br>Phase C this month tariff 1 energy,<br>Phase C this month tariff 2 energy    |
|          |      | 16            | 11600 | Phase C this month tariff 3 energy,<br>Phase C this month tariff 4 energy                                        |
|          |      | 17            | 11700 | Phase C prior month total energy,<br>Phase C prior month tariff 1 energy,<br>Phase C prior month tariff 2 energy |
|          |      | 18            | 11800 | Phase C prior month tariff 3 energy<br>Phase C prior month tariff 4 energy                                       |
|          |      | 19            | 11900 | System reactive energy                                                                                           |
|          |      | 20            | 12000 | Phase A, B, C reactive energy                                                                                    |
|          |      | 21            | 12100 | System apparent energy                                                                                           |
|          |      | 22            | 12200 | Phase A, B, C apparent energy                                                                                    |
| Demand   | 1-18 | 1             | 20100 | System active power demand,<br>system reactive power demand,<br>system apparent power demand                     |
|          |      | 2             | 20200 | Phase A, B, C active power demand                                                                                |
|          |      | 3             | 20300 | Phase A real power demand<br>prediction, Phase A real power<br>demand peak and load time                         |
|          |      | 4             | 20400 | Phase B real power demand<br>prediction, Phase B real power<br>demand peak and load time                         |





## Chapter 3: Appearance & Dimensions

| Function | User | Screen Number | Code  | Content                                                                                          |
|----------|------|---------------|-------|--------------------------------------------------------------------------------------------------|
|          |      | 5             | 20500 | Phase C real power demand<br>prediction, Phase C real power<br>demand peak and load time         |
|          |      | 6             | 20600 | Phase A, B, C reactive power<br>demand                                                           |
|          |      | 7             | 20700 | Phase A reactive power demand<br>prediction, Phase A reactive power<br>demand peak and load time |
|          |      | 8             | 20800 | Phase B reactive power demand<br>prediction, Phase B reactive power<br>demand peak and load time |
|          |      | 9             | 20900 | Phase C reactive power demand<br>prediction, Phase C reactive power<br>demand peak and load time |
|          |      | 10            | 21000 | Phase A, B, C apparent power<br>demand                                                           |
|          |      | 11            | 21100 | Phase A apparent power demand<br>prediction, Phase A apparent power<br>demand peak and load time |
|          |      | 12            | 21200 | Phase B apparent power demand<br>prediction, Phase B apparent power<br>demand peak and load time |
|          |      | 13            | 21300 | Phase C apparent power demand<br>prediction, Phase C apparent power<br>demand peak and load time |
|          |      | 14            | 21400 | Phase A, B, C current demand                                                                     |
|          |      | 15            | 21500 | Phase A current demand<br>prediction, Phase A current<br>demand peak and load time               |





| Function      | User    | Screen Number | Code        | Content                                                                            |
|---------------|---------|---------------|-------------|------------------------------------------------------------------------------------|
|               |         | 16            | 21600       | Phase B current demand<br>prediction, Phase B current<br>demand peak and load time |
|               |         | 17            | 21700       | Phase C current demand<br>prediction, Phase C current<br>demand peak and load time |
| Digital Input | DI      | 1             | 30101-30108 | DI status                                                                          |
| Digital       | Channel | 2             | 30201-30208 | RO status                                                                          |
| Output        | 1-8     | 3             | 30301-30308 | DI pulse input status                                                              |
|               |         | 1             | 40100       | System active power, system<br>reactive power, system<br>apparent power            |
|               |         | 2             | 40200       | System power factor,<br>system load type                                           |
|               |         | 3             | 40300       | Phase A, B, C active power                                                         |
|               |         | 4             | 40400       | Phase A, B, C reactive power                                                       |
|               |         | 5             | 40500       | Phase A, B, C apparent power                                                       |
| Real-time     | Inline  | 6             | 40600       | Phase A, B, C power factor                                                         |
|               |         | 7             | 40700       | Phase A, B, C current                                                              |
|               |         | 8             | 40800       | Phase A, B, C phase voltage                                                        |
|               |         | 9             | 40900       | Phase A, B, C average<br>of phase voltage                                          |
|               |         | 10            | 41000       | Phase A, B, C line voltage                                                         |
|               |         | 11            | 41100       | Phase A, B, C average<br>of line voltage                                           |
|               |         | 12            | 41200       | Voltage frequency                                                                  |





## Chapter 3: Appearance & Dimensions

| Function | User   | Screen Number | Code  | Content                                                                                |
|----------|--------|---------------|-------|----------------------------------------------------------------------------------------|
| Power    | Inline | 1             | 50100 | Current unbalance                                                                      |
| Quality  |        | 2             | 50200 | Phase A harmonic distortion,<br>odd harmonic distortion, even<br>harmonic distortion   |
|          |        | 3             | 50300 | Phase B harmonic distortion,<br>odd harmonic distortion, even<br>harmonic distortion   |
|          |        | 4             | 50400 | Phase C harmonic distortion,<br>odd harmonic distortion, even<br>distortion distortion |
|          |        | 5             | 50500 | Average voltage of harmonic distortion                                                 |
|          |        | 6             | 50600 | Crest factor                                                                           |
|          |        | 7             | 50700 | Telephone harmonic form factor                                                         |
|          |        | 8             | 50800 | Harmonic of Phase A current<br>(2-7)                                                   |
|          |        | 9             | 50900 | Harmonic of Phase A current<br>(8-13)                                                  |
|          |        | 10            | 51000 | Harmonic of Phase A current<br>(14-19)                                                 |
|          |        | 11            | 51100 | Harmonic of Phase A current<br>(20-25)                                                 |
|          |        | 12            | 51200 | Harmonic of Phase A current<br>(26-31)                                                 |
|          |        | 13            | 51300 | Harmonic of Phase B current<br>(2-7)                                                   |
|          |        | 14            | 51400 | Harmonic of Phase B current<br>(8-13)                                                  |





| Function | User | Screen Number | Code  | Content                                |
|----------|------|---------------|-------|----------------------------------------|
|          |      | 15            | 51500 | Harmonic of Phase B current<br>(14-19) |
|          |      | 16            | 51600 | Harmonic of Phase B current<br>(20-25) |
|          |      | 17            | 51700 | Harmonic of Phase B current<br>(26-31) |
|          |      | 18            | 51800 | Harmonic of Phase C current<br>(2-7)   |
|          |      | 19            | 51900 | Harmonic of Phase C current<br>(8-13)  |
|          |      | 20            | 52000 | Harmonic of Phase C current<br>(14-19) |
|          |      | 21            | 52100 | Harmonic of Phase C current<br>(20-25) |
|          |      | 22            | 52200 | Harmonic of Phase C current<br>(26-31) |

### 3.8 Basic Settings and Key Operation

In the second page of the main menu, use the arrow keys to navigate to **SET** and press **OK** to view the meter settings. Users will be prompted by a password screen, this can be left as the default password of **0000** or if the password has been changed enter it to view the settings.

Use the **Left** and **Right** arrow keys to move between settings. To change a setting use the **OK** button to enter edit mode, the setting will be flashing once in edit mode. To change the value of the setting press either the **Up** or **Down** buttons and press the **OK** button to confirm the setting. Once the setting is confirmed it will no longer be flashing. Pressing the **Left** and **Right** buttons at the same time will return the user back to the main menu.





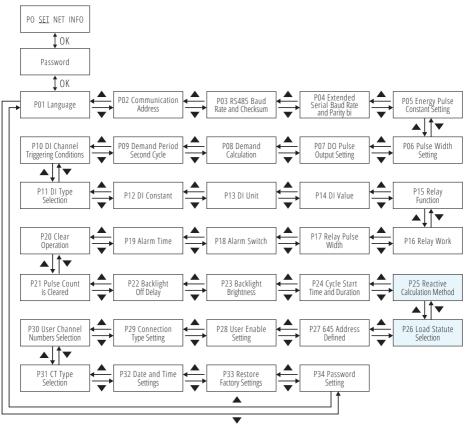
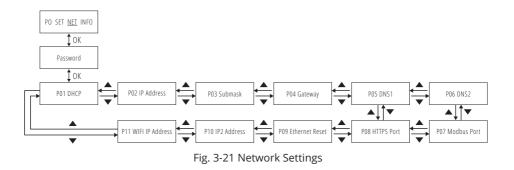



Fig. 3-20 Basic Settings


### 3.9 Network Settings

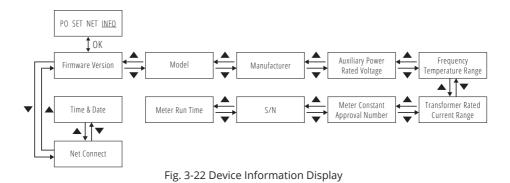
In the second page of the main menu use the arrow keys to navigate to **NET** and press **OK** to enter the NET settings. Users will be prompted by a password screen, this can be left as the default password of **0000** or if the password has been changed enter it to view the network settings.

Use the **Left** and **Right** arrow keys to move between settings. To change a setting use the **OK** button to enter edit mode, the setting will be flashing once in edit mode. To change the value of the setting press either the **Up** or **Down** buttons and press the **OK** button to confirm the setting. Once the setting is confirmed it will no longer be flashing. Pressing the **Left** and **Right** buttons at the same time will return the user back to the main menu.








P01 DHCP represents the DHCP address allocation mode setting, MANU (static IP) and AUTO (dynamic IP); P09 Network Module Reset options:

- 1. No Reset
- 2. Reset Network Module
- 3. Restore Default Parameters

Network settings only apply to the communications module. After network setting configuration, the communication module **needs** to be reset in order to confirm all changes.

## 3.10 Device Information and Key Operation

In the second page of the main menu, use the arrow keys to navigate to **INFO** and then press **OK** to view the meters device information. Use the arrow keys to scroll between pages and press the **OK** button to return to the main menu.









## **Chapter 4: Functions and Software**

4.1 Introduction to Acuview Software 4.1.1 Connecting the KW1850 to Acuview

4.2.1 CT ratio and Channel Mapping

4.3 Real Time Metering

4.4 Demand

4.5 Energy 4.5.1 Time of Use (TOU)

## 4.6 IO Functions

4.6.1 Digital Input4.6.2 Relay Output4.6.3 Digital Output

4.7 Alarm

4.8 System Event Log

4.9 Data Log 4.9.1 Reading the Data Log

4.10 Seal Button (B1) Function 4.10.1 How to use the Seal Button (B1)

**4.11 Device Information** 

# **Chapter 4.0: Functions and Software**

### 4.1 Introduction to Acuview Software

The KW1850 has a wide range of measurement parameters with power quality detection, alarm and other functions. We have designed special software to use and configure the KW1850 meter. This chapter will be combined with the software interface for the functional explanation.

This chapter introduces KW1850 Software (Acuview). The latest version of the software can be downloaded by clicking <u>HERE</u>.



Figure 4-1 KW1850 Software

### 4.1.1 Connecting the KW1850 to Acuview

Users can connect to the software either the RS485 port on the meter or by Ethernet/WIFI. When connecting to the software via RS485 user will need to use an RS485 to USB converter in order to connect.

**NOTE:** For more information on Ethernet/WIFI communication refer to the KW1850-WEB manual.





## Chapter <u>4: Functions & Software</u>

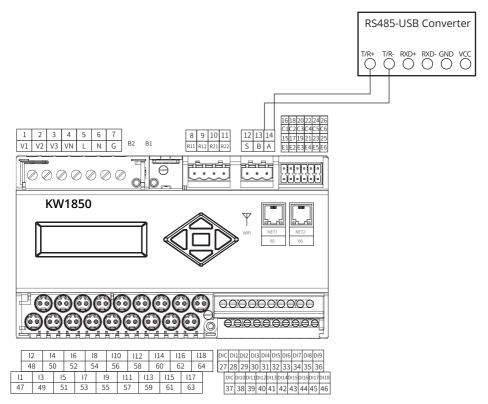



Figure 4-2 KW1850 RS485-USB converter connection

Two wires should be used in connecting the USB-RS485 converter to the meter:

- T/R+ from the converter to 'A'(14) on the meter
- T/R- from the converter to 'B'(15) on the meter

The default communication settings on the KW1850 are:

- Device Address: 1
- Baud Rate: 19200
- Parity: Non1 (No parity, 1 stop bit)





#### Steps to connect to the software:

1. Open the Acuview software, users will be prompted to enter in the connection settings. The COM port can be confirmed in the Device Manager of the computer. Click on OK.

| Connection Settings                                                                                                                                                               | ×            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Name: COM4<br>Type: ③ Serial Port 〇 Network                                                                                                                                       | ОК           |
| Com Port: COM4 🗸 🖧                                                                                                                                                                | Cancel       |
| Baud Rate: 19200 V                                                                                                                                                                |              |
| Parity: None 1 ~                                                                                                                                                                  |              |
| Scan Interval: 200 ms                                                                                                                                                             |              |
| Note: Baud Rate and Parity must match be<br>and software. The default setting is as foll<br>19200 + None 1 for new meter (with displa<br>9600 + None 1 for new transducer (withou | ows:<br>ay). |

Figure 4-3 Connection Setting Configuration

2. Add device window will appear, select AcuRev 2110 (which is equal to KW1850), select the connection created in the previous step, enter in the device address and enter in a description for the device. Click on OK.

| A | dd Device         |                               | ×          |
|---|-------------------|-------------------------------|------------|
|   | Device Type:      | AcuRev 2110 V                 | ОК         |
|   | Connection:       | COM4 ~                        |            |
|   | Device Address:   | 1                             | Cancel     |
|   | Description:      | AcuRev 2110                   |            |
|   | Note: Device Addr | ess must match meter's device | e address. |

Figure 4-4 Add Device page on Acuview



60



3. The meter will automatically connect, if it does not click on the Operation menu and click on Connect.

| Real-Time Metering                                 |                  |          |                  |            |           |           |                  |         |
|----------------------------------------------------|------------------|----------|------------------|------------|-----------|-----------|------------------|---------|
| DI and RO                                          | Volts AN         | 0.0 V    | Volts AB         | 0.0 V      | IA        | 0.000 A   | Load A           | R       |
| - Energy<br>- Demand                               | Volts BN         | 0.0 V    | Volts BC         | 0.0 V      | ΙB        | 0.000 A   | Load B           | R       |
| Harmonics                                          | Volts CN         | 0.0 V    | Volts CA         | 0.0 V      | IC        | 0.000 A   | Load C           | R       |
| ·· Alarm Log<br>·· System Event Log<br>·· Data Log | Volts LN Average | 0.0 V    | Volts LL Average | 0,0 V      | I Average | 0.000 A   | Load Total       | R       |
| ··· Device Information                             | Watt A           | 0.000 kW | VAR A            | 0.000 kvar | VA A      | 0.000 kVA | Pwr Factor A     | 1.000   |
|                                                    | Watt B           | 0.000 kW | VAR B            | 0.000 kvar | VA B      | 0.000 kVA | Pwr Factor B     | 1.000   |
|                                                    | Watt C           | 0.000 kW | VAR C            | 0.000 kvar | VA C      | 0.000 kVA | Pwr Factor C     | 1.000   |
|                                                    | Watt Total       | 0.000 kW | VAR Total        | 0.000 kvar | VA Total  | 0.000 kVA | Pwr Factor Total | 1.000   |
|                                                    |                  |          |                  |            |           |           | Frequency        | 0.00 Hz |
|                                                    |                  |          |                  |            |           |           |                  |         |
|                                                    | User             | $\sim$   |                  |            | ΙA        |           | Load A           |         |
|                                                    |                  |          |                  |            | ΙB        |           | Load B           |         |
|                                                    |                  |          |                  |            | IC        |           | Load C           |         |
|                                                    |                  |          |                  |            |           |           | Load Total       |         |
|                                                    | Watt A           |          | VAR A            |            | VA A      |           | Pwr Factor A     |         |
|                                                    | Watt B           |          | VAR B            |            | VA B      |           | Pwr Factor B     |         |
|                                                    | Watt C           |          | VAR C            |            | VA C      |           | Pwr Factor C     |         |
|                                                    |                  |          | VAR Total        |            | VA Total  |           | Pwr Factor Total |         |

Figure 4-5 KW1850 connected to Acuview

### **4.2 General Settings**

Users can configure the general setting of the KW1850 meter from the Acuview software, some of these settings include the CT ratio/mapping, communication, and password.

To access the settings from Acuview click on the **Settings** tab located on the left panel of the software and select **General**. Users can change the settings for the KW1850 and use the **Update Device** button at the bottom of the page to confirm the settings.





| - Power Meter                                |                                                              |                           |                      |                |        |
|----------------------------------------------|--------------------------------------------------------------|---------------------------|----------------------|----------------|--------|
| General                                      | Security                                                     | Communication             |                      |                |        |
| User and CT<br>DI, RO and Event<br>Alarm     | Change Password                                              | Address 1                 | Baud Rate            | 19200 ~        | bps    |
|                                              | Change Password                                              | Address 2 1               | Parity               | None1 ~        |        |
| ···· Net Module                              |                                                              | Net Module Type           | Baud Rate 2          | 38400 ~        | bps    |
| Net Module 2<br>Data Log 1                   | Channel of Energy Pulse                                      | WiFi ~                    | Parity 2             | None1 ~        |        |
| - Data Log 2                                 | DO1 Ep (CH301/201) 🗸                                         |                           |                      |                |        |
| - Data Log 3                                 | DO2 Ep (Incoming) 🗸 🗸                                        | Energy Pulse              | DI Synchronous Dema  |                |        |
| TOU                                          | DO3 Ep_a (CH101) ~                                           | Const 50000               | DI Trigger Condition | Do not trigger | ~      |
| ····· Ten Years Holiday<br>····· Pulse Input | DO4 Ep_a (CH101) ~                                           | Width 20 ms               | DI Sync-Source       | DI1            | $\sim$ |
|                                              | DO5 Ep_a (CH101) V                                           | Rated Voltage             | Demand Type          |                |        |
|                                              | DO6 Ep_a (CH101) ~                                           | 220 V                     | Sliding Window Dem   | and            | $\sim$ |
|                                              | VAR Calculation Method                                       | VAR/PF Convention         | Demand               |                |        |
|                                              | Method 1 (True)                                              | <ul> <li>● IEC</li> </ul> | Averaging Interval W | indow 15 🔺     | min    |
|                                              | O Method 2 (Generalized)                                     | OIEEE                     | Sub-Interval         | 1              | min    |
|                                              | Display<br>Auto-cycle Start Time 1<br>Auto-cycle Show Time 5 |                           | wer Decimal          |                |        |
|                                              | Non-Standard Seal Options of S                               | eals                      |                      |                |        |
|                                              | Device Run-Time                                              |                           | Communication F      | Parameters     |        |
|                                              | Device Clock                                                 |                           | Network Parame       | ters           |        |
|                                              | Device Clock + TOU Related                                   |                           | RO Related           |                |        |
|                                              |                                                              |                           |                      | Update D       | evice  |
|                                              |                                                              |                           |                      |                |        |

Figure 4-6 General Settings

The General Settings page is divided into the following sections.

### Security

Change Password: Users can change the meter password using this setting. The range is 0000-9999.

### Communication

- Address: Users can configure the Modbus address for the device, this refers to the Modbus address via RS485. The range is from 1-247, the default address is 1.
- Address 2: Users can configure the Modbus TCP address for the meter, the default is 1 and the range is 1-247.





- Baud Rate: Users can configure the baud rate for the RS485 port, the range is 1200-115200 bps. The default is 19200.
- Parity: Users can configure the parity here, the default is None 1 (No parity, 1 stop bit)

**NOTE**: Baud rate 2 and Parity 2 should not be changed from 38400 and None1, these settings are required in order for successful communication between the meter and communications module.

#### Demand

- Demand Type: There are 4 types of demand that the user can select. The default method is Sliding Window.
  - Fixed Window: The demand is calculated based on selecting the calculation period between 1-30min. The meter will calculate and update the demand values at the end of each calculation period.
  - Sliding Window: The demand is calculated by selecting the calculation period between 1-30 min. The meter will average the energy accumulated within this period of time and the demand value is updated every minute.
  - Thermal: The demand is calculated based on thermal response, used in thermal demand meters. This method uses a sliding window to update the demand value at the end of each calculation period.
  - Rolling Window: The demand is based on selecting a calculation period between 1-30 min, a sub interval(Demand Calculation Slip Time) and the demand value is updated at each sub interval. The sub interval must be a factor of the calculation period. For example, with a calculation period of 15 minutes, the sub interval can be configured as 5 minutes.

### VAR Calculation/VAR Convention

- VAR Calculation Method: Can be either True or Generalized.
  - True: Uses the Budeanu Concept to calculate the True reactive power. This method generally takes the harmonic components to do the calculation instead of using the power vector triangle method.
  - Generalized: Uses Fryze's concept to calculate the Generalized reactive power. This method separates instantaneous current into two components, active and reactive currents.
- VAR/PF Convention: Users can select the convention as either IEC or IEEE





### **Energy Pulse**

- Channel of Energy Pulse: Users can select which user/input channel energy corresponds to the Digital Output channels.
- Pulse Constant: Used to represent the amount of pulses that represents 1kWh. The range is 1-60000, the default is 50000.
- Pulse Width: Users can configure the pulse width, the range is 20-100ms, the default is 80ms.

### **DI Synchronous Demand**

- DI Trigger Condition: Users can synchronize the Demand with the DI, and can select the condition in which to synchronize. The options are
  - No Trigger
  - Trigger by rising edge
  - Trigger by falling edge
  - Trigger by changes
- DI Sync-Source: DI Synchronization source can set as DI1-DI8.

### **Rated Voltage**

Rated Voltage: This rated voltage is the rating used for the Alarm setting. The default is 220V and the range is 120-600VLL.

### 4.2.1 CT ratio and Channel Mapping

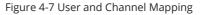
The CT ratio must be configured in the KW1850 meter in order for it to correctly read current measurements. Users can configure the CT settings in the software by clicking on **User and CT** under the **Settings** tab on the left panel of Acuview.

In the CT model section users can enter in the primary rating of the CTs being used with the meter. The range is 5-2000A and the default setting is 20A.

Users can also map the channel names in this section where the user name can be customized. The user names can support up to 6 characters (ASCII).

Number 101-118 refers to the physical single-phase channel 1-18.






Number 301/201- 306/206 refers to three-phase user channels 1 to 6.

The enable display section allows users to enable or disable that particular channel on the LCD display of the meter. For example, the first one username Jack01 is set as 301/201 meaning it is the first three phase circuit (using channels 1,2,3).

**NOTE**: After any change in configuration users must click on "Update Device" in order to send and save the settings to the meter.

| ser<br>ID | User<br>Name | Channe  | 1      | Enable<br>Display | ◯ 1LN          | ③ 3LN           |                |
|-----------|--------------|---------|--------|-------------------|----------------|-----------------|----------------|
| #1        | Jack01       | 301/201 | $\sim$ |                   | CT Model (Only | for EM Module)- | _              |
| #2        | user02       | 102     | $\sim$ |                   | Channel 101    | 70              | A (Full-scale) |
| #3        | user03       | 103     | $\sim$ |                   | Channel 102    | 70              | A (Full-scale) |
| #4        | user04       | 104     | $\sim$ |                   | Channel 103    | 70              | A (Full-scale) |
| #5        | user05       | 105     | $\sim$ |                   | Channel 104    | 200             | A (Full-scale) |
| #6        | user06       | 106     | $\sim$ |                   | Channel 105    | 200             | A (Full-scale) |
| #7        | user07       | 107     | $\sim$ |                   | Channel 106    | 200             | A (Full-scale) |
| #8        | user08       | 108     | $\sim$ |                   | Channel 107    | 200             | A (Full-scale) |
| #9        | user09       | 109     | $\sim$ |                   | Channel 108    | 200             | A (Full-scale) |
| #10       | user 10      | 110     | $\sim$ |                   | Channel 109    | 200             | A (Full-scale) |
| #11       | user 11      | 111     | ~      |                   | Channel 110    | 200             | A (Full-scale) |
| #12       | user 12      | 112     | ~      |                   | Channel 111    | 200             | A (Full-scale) |
| #13       | user 13      | 113     | $\sim$ |                   | Channel 112    | 200             | A (Full-scale) |
| #14       | user 14      | 114     | $\sim$ |                   | Channel 113    | 200             | A (Full-scale) |
| #15       | user 15      | 115     | ~      |                   | Channel 114    | 200             | A (Full-scale) |
| #16       | user 16      | 116     | ~      |                   | Channel 115    | 200             | A (Full-scale) |
| #17       | user 17      | 117     | $\sim$ |                   | Channel 116    | 200             | A (Full-scale) |
| #18       | user 18      | 118     | $\sim$ |                   | Channel 117    | 200             | A (Full-scale) |
|           | р <b></b>    |         |        |                   | Channel 118    | 200             | A (Full-scale) |







## 4.3 Real Time Metering

The KW1850 supports real time parameters such as voltage, current and power. Voltage includes line voltage, phase voltage, current for each channel and inline (total of all circuits), power (active, reactive, apparent) and power factor for each channel and inline values. Depending on the wiring mode configured in the meter the view on Acuview will be different.

The real time values can be seen on the software by clicking on **Real-Time Metering** under the **Readings** tab on the left panel of the software. The figure below shows the real time metering section when the wiring is set for 3LN.

The top portion of the page displays the meter inline values, meaning the totals and averages for all circuits connected to the meter. The **User** section at the bottom of the page allows users to view the real time metering for each channel or circuit connected to the meter.

| /olts AN         | 0.0 V    | Volts AB         | 10.0 V     | IA        | 0.000 A   | Load A           | R       |
|------------------|----------|------------------|------------|-----------|-----------|------------------|---------|
| /olts BN         | 0.0 V    | Volts BC         | 0.0 V      | ΙB        | 0.000 A   | Load B           | R       |
| /olts CN         | 0.0 V    | Volts CA         | 0.0 V      | IC        | 0.000 A   | Load C           | R       |
| /olts LN Average | 0.0 V    | Volts LL Average | 3.3 V      | I Average | 0.000 A   | Load Total       | R       |
| Watt A           | 0.000 kW | VAR A            | 0.000 kvar | VA A      | 0.000 kVA | Pwr Factor A     | 1.000   |
| Natt B           | 0.000 kW | VAR B            | 0.000 kvar | VA B      | 0.000 kVA | Pwr Factor B     | 1.000   |
| Natt C           | 0.000 kW | VAR C            | 0.000 kvar | VA C      | 0.000 kVA | Pwr Factor C     | 1.000   |
| Natt Total       | 0.000 kW | VAR Total        | 0.000 kvar | VA Total  | 0.000 kVA | Pwr Factor Total | 1.000   |
|                  |          |                  |            |           |           | Frequency        | 0.00 Hz |
| Jser Jack01 (C   | H301) V  |                  |            | IA        | 0.000 A   | Load A           | R       |
|                  |          |                  |            | ΙB        | 0.000 A   | Load B           | R       |
|                  |          |                  |            | IC        | 0.000 A   | Load C           | R       |
|                  |          |                  |            |           |           | Load Total       | R       |
| Watt A           | 0.000 kW | VAR A            | 0.000 kvar | VA A      | 0.000 kVA | Pwr Factor A     | 1.000   |
| Watt B           | 0.000 kW | VAR B            | 0.000 kvar | VA B      | 0.000 kVA | Pwr Factor B     | 1.000   |
| Vall D           | 0.000 kW | VAR C            | 0.000 kvar | VA C      | 0.000 kVA | Pwr Factor C     | 1.000   |
| Watt D           |          |                  |            |           |           |                  |         |

Figure 4-8 Real Time Metering

66



### 4.4 Demand

The meter demand readings can be found under the **Readings** tab by selecting **Demand**. This page displays the Demand, Max Demand, Max Demand Time, Demand Prediction (update per second) of the power, reactive power, apparent power and current. The page is divided into two sections where the top part of the page shows the total demand readings for all circuits/ channels connected to the meter. The bottom half of the page is where users can select the individual channels/circuits to view the demand.

KW1850 supports Demand Synchronization, where the demand is synchronized with the Digital Input. The demand cycle or the end of the sub-cycle can be output as DO. This can be configured in the general settings sections.

| Users can reset the demand in this section | by using the <b>Clear Demand</b> button. |
|--------------------------------------------|------------------------------------------|
|--------------------------------------------|------------------------------------------|

| Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum                                                                                                                                                       | Time Stamp                                                                                                                                                                                                                                        | Prediction                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 548.149 A                                                                                                                                                     | 2020-03-27 17:04:08                                                                                                                                                                                                                               | 0.000 A                                                                                                                                                             |
| I B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93.617 A                                                                                                                                                      | 2020-06-25 12:23:40                                                                                                                                                                                                                               | 0.000 A                                                                                                                                                             |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93.589 A                                                                                                                                                      | 2020-06-25 12:23:40                                                                                                                                                                                                                               | 0.000 A                                                                                                                                                             |
| Natt A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 56.217 kW                                                                                                                                                     | 2020-03-26 16:27:13                                                                                                                                                                                                                               | 0.000 kW                                                                                                                                                            |
| Vatt B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.021 kW                                                                                                                                                     | 2020-06-25 12:22:40                                                                                                                                                                                                                               | 0.000 kW                                                                                                                                                            |
| Vatt C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.991 kW                                                                                                                                                     | 2020-06-25 12:22:40                                                                                                                                                                                                                               | 0.000 kW                                                                                                                                                            |
| Vatt Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.983 kW                                                                                                                                                     | 2020-03-26 16:27:13                                                                                                                                                                                                                               | 0.000 kW                                                                                                                                                            |
| AR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000 kvar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -28.045 kvar                                                                                                                                                  | 2020-03-27 15:29:55                                                                                                                                                                                                                               | 0.000 kvar                                                                                                                                                          |
| AR B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000 kvar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.447 kvar                                                                                                                                                   | 2020-03-27 16:54:06                                                                                                                                                                                                                               | 0.000 kvar                                                                                                                                                          |
| AR C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000 kvar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.442 kvar                                                                                                                                                   | 2020-03-27 16:37:04                                                                                                                                                                                                                               | 0.000 kvar                                                                                                                                                          |
| AR Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000 kvar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -30.928 kvar                                                                                                                                                  | 2020-03-27 15:29:55                                                                                                                                                                                                                               | 0.000 kvar                                                                                                                                                          |
| A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000 kVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56.304 kVA                                                                                                                                                    | 2020-03-26 16:29:13                                                                                                                                                                                                                               | 0.000 kVA                                                                                                                                                           |
| /A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000 kVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.249 kVA                                                                                                                                                    | 2020-06-25 12:22:40                                                                                                                                                                                                                               | 0.000 kVA                                                                                                                                                           |
| A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000 kVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.240 kVA                                                                                                                                                    | 2020-06-25 12:22:40                                                                                                                                                                                                                               | 0.000 kVA                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                                                                                                                   |                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000 kVA<br>1 (CH301) ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62.070 kVA                                                                                                                                                    | 2020-03-26 16:29:13                                                                                                                                                                                                                               | 0.000 kVA                                                                                                                                                           |
| Jser Jack0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                               | 2020-03-26 16:29:13                                                                                                                                                                                                                               | 0.000 kVA                                                                                                                                                           |
| Jser Jack0<br>Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (CH301) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clear Demand<br>Maximum                                                                                                                                       | Time Stamp                                                                                                                                                                                                                                        |                                                                                                                                                                     |
| Jser Jack0<br>Demand<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (CH301) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clear Demand                                                                                                                                                  |                                                                                                                                                                                                                                                   | Prediction                                                                                                                                                          |
| Jser Jack0<br>Demand<br>A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 (CH30 1) V<br>Current<br>0.000 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clear Demand<br>Maximum<br>121. 187 A                                                                                                                         | Time Stamp<br>2020-06-25 12:22:40                                                                                                                                                                                                                 | Prediction<br>0.000 A                                                                                                                                               |
| Jser Jack0<br>Demand<br>A<br>B<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 (CH301) V<br>Current<br>0.000 A<br>0.000 A<br>0.000 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A                                                                                                              | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40                                                                                                                                                                                          | Prediction<br>0.000 A<br>0.000 A                                                                                                                                    |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>Vatt A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 (CH301) V<br>Current<br>0.000 A<br>0.000 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A<br>93.589 A                                                                                                  | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40                                                                                                                                                                   | Prediction<br>0.000 A<br>0.000 A<br>0.000 A                                                                                                                         |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>Vatt A<br>Vatt B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 (CH301)<br>Current<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A<br>93.539 A<br>12.342 KW                                                                                     | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40                                                                                                                                            | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 A                                                                                                              |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>Vatt A<br>Vatt A<br>Vatt B<br>Vatt C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (CH301) ~<br>Current<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A<br>93.589 A<br>12.342 kW<br>11.021 kW                                                                        | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40                                                                                                                     | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW                                                                                                 |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>Vatt A<br>Vatt A<br>Vatt B<br>Vatt C<br>Vatt Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (CH301) V<br>Current<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A<br>93.589 A<br>12.342 kW<br>11.021 kW<br>10.991 kW                                                           | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40                                                                                              | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW                                                                                     |
| Jser Jacki<br>Demand<br>A<br>B<br>C<br>Vatt A<br>Vatt A<br>Vatt B<br>Vatt C<br>Vatt Total<br>IAR A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (CH301) V<br>Current<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A<br>93.617 A<br>93.639 A<br>12.342 kW<br>11.021 kW<br>10.991 kW<br>34.354 kW                                  | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40                                                                                              | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW                                                                         |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>Vatt A<br>Vatt B<br>Vatt B<br>Vatt C<br>Vatt Total<br>/AR A<br>/AR B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 (CH301) ~<br>Current<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clear Demand<br>Maximum<br>121.187 A<br>93.589 A<br>12.342 kW<br>11.021 kW<br>10.991 kW<br>34.334 kW<br>-0.690 kvar                                           | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40                                                                       | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW                                                             |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>C<br>Vatt A<br>Vatt A<br>Vatt A<br>Vatt A<br>Vatt C<br>Vatt C<br>Vatt C<br>Vatt A<br>Vatt C<br>Vatt A<br>Vatt A<br>Vatt B<br>Vatt A<br>Vatt A<br>Vat A<br>Vatt A<br>Vatt A<br>Vatt A<br>VA<br>Vatt A<br>Vatt A<br>Vatt A<br>Vatt A<br>Vatt A<br>Va | 1 (CH301) ~<br>Current<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kwar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A<br>93.589 A<br>12.342 kW<br>11.021 kW<br>10.991 kW<br>34.354 kW<br>-0.690 kvar<br>0.000 kvar                 | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40                         | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kwar<br>0.000 kvar                                 |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>Vatt A<br>Vatt B<br>Vatt B<br>Vatt C<br>Vatt Total<br>AR A<br>AR B<br>VAR C<br>AR Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 (CH301) ~<br>Current<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 | Clear Demand<br>Maximum<br>121.187 A<br>93.617 A<br>93.589 A<br>12.342 kW<br>10.991 kW<br>34.354 kW<br>-0.690 kvar<br>0.000 kvar<br>0.000 kvar                | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:14:39                                                | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kwar<br>0.000 kvar<br>0.000 kvar                                           |
| Jser Jack0<br>Demand<br>A<br>B<br>C<br>Vatt A<br>Vatt B<br>Vatt C<br>Vatt Total<br>/AR A<br>/AR C<br>/AR Total<br>/A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 (CH301) ~<br>Current<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kwar<br>0.000 kvar<br>0.000 kvar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear Demand<br>Maximum<br>121,187 A<br>93,589 A<br>12,342 kW<br>11,021 kW<br>10,991 kW<br>34,354 kW<br>-0,690 kvar<br>0,000 kvar<br>-0,689 kvar              | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:21:40<br>2020-06-25 12:14:39<br>2020-06-25 12:14:39<br>2020-06-25 12:14:39  | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kwr<br>0.000 kvar<br>0.000 kvar<br>0.000 kvar                              |
| VA Total User Jack0 Decmand I.A UB UC Watt A Watt B Watt C Watt Total VAR A VAR C VAR Total VAR C VAR Total VAR A VAB VAB VAB VAB VAB VAB VAB VAB VAB VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (CH301) ✓<br>Current<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kwar<br>0.000 kwar<br>0.000 kwar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clear Demand<br>Maximum<br>121.187 A<br>93.589 A<br>12.342 kW<br>11.021 kW<br>10.991 kW<br>34.354 kW<br>-0.690 kvar<br>0.000 kvar<br>0.000 kvar<br>12.766 kvA | Time Stamp<br>2020-06-25 12:22:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:23:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:22:40<br>2020-06-25 12:21:439<br>2020-06-25 12:14:39<br>2020-06-25 12:22:40 | Prediction<br>0.000 A<br>0.000 A<br>0.000 A<br>0.000 kW<br>0.000 kW<br>0.000 kW<br>0.000 kWar<br>0.000 kvar<br>0.000 kvar<br>0.000 kvar<br>0.000 kvar<br>0.000 kvar |

Figure 4-9 Demand Readings





## 4.5 Energy

From the Acuview software users can view the energy readings for the meter. The top portion of the page provides the total energy consumed energy for all circuits connected to the meter. This includes the real, reactive, and apparent energy. The KW1850 also supports a TOU function where the energy can be divided into different tariff groups. The TOU provides the current energy TOU as well as the prior month TOU.

The bottom portion of the energy page allows users to view the energy consumption for each individual circuit/channel. The energy value is read and write, meaning users can edit the value of the energy from this section. To edit the value of the energy click on the value of the energy parameter and enter in the new value. Users can reset the meter energy by using the **Clear Energy** button.

| Real Time                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ep_a                                                                                                                                                                                                                                                                                                                                                                                                               | 205.7 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eq_a                                                                                                    | 66.0 kvarh                                                                                                                      | Es_a                                                                    | 223.2 kVAh                                                                                                                                                                                                                                                                                                                                       |
| Ep_b                                                                                                                                                                                                                                                                                                                                                                                                               | 13.4 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eq_b                                                                                                    | 3.4 kvarh                                                                                                                       | Es_b                                                                    | 14.3 kVAh                                                                                                                                                                                                                                                                                                                                        |
| Ep_c                                                                                                                                                                                                                                                                                                                                                                                                               | 13.4 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eq_c                                                                                                    | 3.4 kvarh                                                                                                                       | Es_c                                                                    | 14.3 kVAh                                                                                                                                                                                                                                                                                                                                        |
| Ep                                                                                                                                                                                                                                                                                                                                                                                                                 | 232.5 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eq                                                                                                      | 72.8 kvarh                                                                                                                      | Es                                                                      | 251.8 kVAh                                                                                                                                                                                                                                                                                                                                       |
| Current Month TC                                                                                                                                                                                                                                                                                                                                                                                                   | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                         |                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                    | Sharp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak                                                                                                    | Valley                                                                                                                          | Normal                                                                  | Total                                                                                                                                                                                                                                                                                                                                            |
| Ep_a                                                                                                                                                                                                                                                                                                                                                                                                               | 205.7 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 kWh                                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | 205.7 kWh                                                                                                                                                                                                                                                                                                                                        |
| Ep_b                                                                                                                                                                                                                                                                                                                                                                                                               | 13.4 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 kWh                                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | <u>13.4 kWh</u>                                                                                                                                                                                                                                                                                                                                  |
| Ep_c                                                                                                                                                                                                                                                                                                                                                                                                               | <u>13.4 kWh</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 kWh                                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | 13.4 kWh                                                                                                                                                                                                                                                                                                                                         |
| Ep                                                                                                                                                                                                                                                                                                                                                                                                                 | 232.5 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 kWh                                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | 232.5 kWh                                                                                                                                                                                                                                                                                                                                        |
| Prior Month TOU                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                    | Sharp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak                                                                                                    | Valley                                                                                                                          | Normal                                                                  | Total                                                                                                                                                                                                                                                                                                                                            |
| Ep_a                                                                                                                                                                                                                                                                                                                                                                                                               | 202.5 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 kWh                                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | 202.5 kWh                                                                                                                                                                                                                                                                                                                                        |
| Ep_b                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 kWh                                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | 10.4 kWh                                                                                                                                                                                                                                                                                                                                         |
| Ep c                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 kWh                                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | 10.4 kWh                                                                                                                                                                                                                                                                                                                                         |
| cp_c                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                         |                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                  |
| Ep<br>Jser Jack01 (                                                                                                                                                                                                                                                                                                                                                                                                | 223.3 kWh<br>CH301) ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 kWh<br>Clear Energy                                                                                 | 0.0 kWh                                                                                                                         | 0.0 kWh                                                                 | 223.3 kWh                                                                                                                                                                                                                                                                                                                                        |
| Ep<br>User Jack01 (<br>Real Time                                                                                                                                                                                                                                                                                                                                                                                   | CH301) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear Energy                                                                                            |                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                  |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a                                                                                                                                                                                                                                                                                                                                                                           | CH301) ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear Energy<br>Eq_a                                                                                    | 0.2 kvarh                                                                                                                       | Es_a                                                                    | 3.2 kVAh                                                                                                                                                                                                                                                                                                                                         |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a<br>Ep_b                                                                                                                                                                                                                                                                                                                                                                   | CH301) ∨<br><u>3.2 kWh</u><br><u>3.0 kWh</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Clear Energy<br>Eq_a<br>Eq_b                                                                            | 0.2 kvarh<br>0.0 kvarh                                                                                                          | Es_a<br>Es_b                                                            | <u>3.2 kvAh</u><br><u>3.0 kvAh</u>                                                                                                                                                                                                                                                                                                               |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a<br>Ep_b<br>Ep_c                                                                                                                                                                                                                                                                                                                                                           | CH301) ~<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c                                                                    | 0.2 kvarh<br>0.0 kvarh<br>0.0 kvarh                                                                                             | Es_a<br>Es_b<br>Es_c                                                    | <u>3.2 kvAh</u><br><u>3.0 kvAh</u><br><u>3.0 kvAh</u>                                                                                                                                                                                                                                                                                            |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a<br>Ep_b                                                                                                                                                                                                                                                                                                                                                                   | CH301) ∨<br><u>3.2 kWh</u><br><u>3.0 kWh</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Clear Energy<br>Eq_a<br>Eq_b                                                                            | 0.2 kvarh<br>0.0 kvarh                                                                                                          | Es_a<br>Es_b                                                            | <u>3.2 kvAh</u><br><u>3.0 kvAh</u>                                                                                                                                                                                                                                                                                                               |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a<br>Ep_b<br>Ep_c                                                                                                                                                                                                                                                                                                                                                           | CH301) V<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq_c<br>Eq                                                      | 0.2 kvarh<br>0.0 kvarh<br>0.0 kvarh<br>0.2 kvarh                                                                                | Es_a<br>Es_b<br>Es_c<br>Es                                              | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh                                                                                                                                                                                                                                                                                                     |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep<br>Current Month TC                                                                                                                                                                                                                                                                                                                                 | CH301) ~<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh<br>9.2 kWh<br>9.2 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq<br>Peak                                                      | 0.2 kvarh<br>0.0 kvarh<br>0.0 kvarh<br>0.2 kvarh<br>Valey                                                                       | Es_a<br>Es_b<br>Es_c<br>Es<br>Normal                                    | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh<br>70tal                                                                                                                                                                                                                                                                                            |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep<br>Current Month TC<br>Ep_a                                                                                                                                                                                                                                                                                                                         | CH301) V<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh<br>V<br>Sharp<br>3.2 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq<br>Eq<br>Peak<br><u>0.0 kWh</u>                              | 0.2 kvarh<br>0.0 kvarh<br>0.0 kvarh<br>0.2 kvarh<br>0.2 kvarh<br>Valley<br>0.0 kWh                                              | Es_a<br>Es_b<br>Es_c<br>Es_<br>Normal<br><u>0.0 kWh</u>                 | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh<br>Total<br>3.2 kVh                                                                                                                                                                                                                                                                                 |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep<br>Current Month TC<br>Ep_a<br>Ep_b                                                                                                                                                                                                                                                                                                                 | CH301) V<br>3.2 kWh<br>3.0 kWh<br>9.2 kWh<br>9.2 kWh<br>3.2 kWh<br>3.2 kWh<br>3.0 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq<br>Peak<br>9.0 kWh<br>9.0 kWh                                | 0.2 kvath<br>0.0 kvath<br>0.0 kvath<br>0.2 kvath<br>0.2 kvath<br>Valley<br>0.0 kWh                                              | Es_a<br>Es_b<br>Es_c<br>Es_<br>Normal<br>0.0 kWh                        | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh<br>Total<br>3.2 kWh<br>3.0 kWh                                                                                                                                                                                                                                                                      |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_b<br>Ep_c<br>Ep<br>Current Month TC<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep_c                                                                                                                                                                                                                                                                                                         | CH301) V<br>3.2 KWh<br>3.0 KWh<br>3.0 KWh<br>9.2 KWh<br>3.2 KWh<br>3.0 KWh<br>3.0 KWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq<br>Peak<br>0.0kWh<br>0.0kWh                                  | 0.2 kvath<br>0.0 kvath<br>0.0 kvath<br>0.2 kvath<br>0.2 kvath<br>Valey<br>0.0 kWh<br>0.0 kWh                                    | Es_a<br>Es_b<br>Es_c<br>Es<br>Normal<br>0.0 kWh<br>0.0 kWh              | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh<br>9.2 kVAh<br>7 otal<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh                                                                                                                                                                                                                                              |
| Ep<br>Ep<br>Real Time<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep<br>Current Month TC<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c                                                                                                                                                                                                                                                            | CH301) V<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh<br>3.2 kWh<br>3.2 kWh<br>3.2 kWh<br>3.0 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq<br>Peak<br>9.0 kWh<br>9.0 kWh                                | 0.2 kvath<br>0.0 kvath<br>0.0 kvath<br>0.2 kvath<br>0.2 kvath<br>Valley<br>0.0 kWh                                              | Es_a<br>Es_b<br>Es_c<br>Es_<br>Normal<br>0.0 kWh                        | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh<br>Total<br>3.2 kWh<br>3.0 kWh                                                                                                                                                                                                                                                                      |
| Ep<br>User Jack01 (<br>Real Time<br>Ep_b<br>Ep_c<br>Ep<br>Current Month TC<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep_c                                                                                                                                                                                                                                                                                                         | CH301) ✓<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh<br>9.2 kWh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq<br>Peak<br>0.0kWh<br>0.0kWh                                  | 0.2 kvarh<br>0.0 kvarh<br>0.0 kvarh<br>0.2 kvarh<br>0.2 kvarh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh                       | Es_a<br>Es_b<br>Es_c<br>Es<br>Normal<br>0.0 kWh<br>0.0 kWh              | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh<br>9.2 kVAh<br>7 otal<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh                                                                                                                                                                                                                                              |
| Ep<br>Ep<br>Real Time<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep_c<br>Ep_c<br>Current Month TC<br>Ep_a<br>Ep_b<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c<br>Ep_c                                                                                                                                                                                                                                                  | CH301) V<br>3.2 KWh<br>3.0 KWh<br>3.0 KWh<br>9.2 KWh<br>3.2 KWh<br>3.0 KWh<br>3.0 KWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clear Energy<br>Eq_8<br>Eq_b<br>Eq_c<br>Eq<br>Peak<br>0.0kWh<br>0.0kWh<br>0.0kWh<br>0.0kWh              | 0.2 kvath<br>0.0 kvath<br>0.0 kvath<br>0.2 kvath<br>0.2 kvath<br>Valey<br>0.0 kWh<br>0.0 kWh                                    | Es_a<br>Es_b<br>Es_c<br>Es<br>Normal<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh   | 3.2 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>3.0 kVAh<br>9.2 kVAh<br>3.2 kVAh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh                                                                                                                                                                                                                                            |
| Ep           Ep           User           Jack01 (f           Ep_a           Ep_b           Ep_c           Ep_b           Ep_b           Ep_b           Ep_b           Ep_b           Pa           Ep_b           Pa           Ep_b           Ep_b           Ep_b           Ep_b           Ep_c           Ep_b           Ep_b           Ep_c           Ep_b           Ep_c           Ep_o           Prior Month TOU | CH301) ✓<br>3.2 KWh<br>3.0 KWh<br>3.0 KWh<br>9.2 KWh<br>3.0 KWH<br>3 | Clear Energy<br>Eq.,a<br>Eq.,b<br>Eq.,c<br>Eq<br>Peak<br>0.0kWh<br>0.0kWh<br>0.0kWh<br>0.0kWh<br>0.0kWh | 0.2 kvæh<br>0.0 kvæh<br>0.0 kvæh<br>0.0 kvæh<br>0.2 kvæh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh                 | Es_a<br>Es_b<br>Es_c<br>Es<br>O.0.kWh<br>O.0.kWh<br>O.0.kWh<br>O.0.kWh  | 3.2 kVAh<br>3.0 kVAh                                                                                                                                                                                                                 |
| Ep           User         Jadk01 (           Real Time         Ep_a           Ep_b         Ep_c           Ep         Ep_b           Current Month TOU         Ep_c           Ep         Phior Month TOU           Ep_a         Ep_c                                                                                                                                                                                | CH301) V<br>3.2 kWh<br>3.0 kWh<br>3.0 kWh<br>9.2 kWh<br>1.0 kWh<br>9.2 kWh<br>3.0 kWh<br>9.2 kWh<br>3.0 kWh<br>9.2 kWh<br>0.0 kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Clear Energy<br>Eq_a<br>Eq_b<br>Eq_c<br>Eq<br>Peak<br>0.0kWh<br>0.0kWh<br>0.0kWh<br>0.0kWh              | 0.2 kvath<br>0.0 kvath<br>0.0 kvath<br>0.2 kvath<br>0.2 kvath<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh | Es_a<br>Es_b<br>Es_c<br>Es_c<br>Normal<br>0.0 kWh<br>0.0 kWh<br>0.0 kWh | 3.2.1VAh           3.0.1VAh           3.0.1VAh           3.0.1VAh           9.2.1VAh           Total           3.0.1VAh           9.2.1VAh           10.1           3.0.1           3.0.1           10.1           3.0.1           10.1           10.1           10.1           10.1           10.1           10.1           10.1           10.1 |

Figure 4-10 Energy Readings







#### 4.5.1 Time of Use (TOU)

The KW1850 supports a time-of-use function that allows users to assign up to 4 different tariffs to different time periods within the day according to their billing requirements. The meter will calculate and accumulate energy to each of the different tariffs configured based on the meters time/date and TOU settings. The TOU function allows users to view the current month usage as well as the previous months usage.

The Time of use (TOU) must be configured from the Acuview software by selecting **TOU** under the **Settings** tab.

|                                                                                                                                                                                                     | 2                                                                                                                  | _                                                                               |                                                                                                                   |                                                             |                                                         |                                                                | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                            |                                                         |                                                                            | 4       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|---------|
| ison Setting                                                                                                                                                                                        |                                                                                                                    | _                                                                               |                                                                                                                   | hedule                                                      |                                                         | -                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | ariff Set                                               |                                                                            |         |
| ment Setting                                                                                                                                                                                        | 9                                                                                                                  | _                                                                               |                                                                                                                   | eeken                                                       |                                                         |                                                                | 2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | oliday S                                                |                                                                            | 0       |
| rent Tariff                                                                                                                                                                                         | 2                                                                                                                  |                                                                                 | Fa                                                                                                                | iult Sta                                                    | itus V                                                  | Vord 1                                                         | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                                            | ault Stat                                               | tus Wor                                                                    | d 2 0   |
| onthly Billing N                                                                                                                                                                                    | 1ode                                                                                                               |                                                                                 |                                                                                                                   |                                                             |                                                         |                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>⊠</b> En                                                  | able TO                                                 | J                                                                          |         |
| End of Mor                                                                                                                                                                                          | nth                                                                                                                |                                                                                 | _                                                                                                                 |                                                             |                                                         | _                                                              | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Re                                                           | store to                                                | Default                                                                    | ts      |
| Assign                                                                                                                                                                                              |                                                                                                                    | 1                                                                               | Day 1                                                                                                             |                                                             | Hou                                                     | r 0                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Res                                                          | ore to D                                                | )efaults                                                                   |         |
| eekend Day                                                                                                                                                                                          | ,                                                                                                                  | _                                                                               |                                                                                                                   |                                                             | _                                                       |                                                                |      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                         |                                                                            |         |
| Monday                                                                                                                                                                                              | l                                                                                                                  | Tue                                                                             |                                                                                                                   |                                                             |                                                         | Wedne                                                          | sday | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thurs                                                        | day                                                     | LIF                                                                        | riday   |
| Saturday                                                                                                                                                                                            | l                                                                                                                  | Sur                                                                             | iday                                                                                                              |                                                             |                                                         |                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                         |                                                                            |         |
| aylight Saving                                                                                                                                                                                      |                                                                                                                    |                                                                                 |                                                                                                                   |                                                             |                                                         |                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                         |                                                                            |         |
| DST Enable                                                                                                                                                                                          | 2                                                                                                                  |                                                                                 |                                                                                                                   |                                                             |                                                         |                                                                |      | DST F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ormat                                                        | Forma                                                   | t1 ~                                                                       | ·       |
| Format 1<br>DST Start                                                                                                                                                                               |                                                                                                                    |                                                                                 |                                                                                                                   |                                                             |                                                         |                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                         |                                                                            |         |
|                                                                                                                                                                                                     | ~ 1                                                                                                                | Day                                                                             |                                                                                                                   | Hour                                                        | 0                                                       | Mir                                                            |      | م بنام ه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t Time                                                       | 60                                                      | Minut                                                                      |         |
| Jan                                                                                                                                                                                                 | ~ 1                                                                                                                | Day                                                                             | •                                                                                                                 | Hour                                                        |                                                         | 1410                                                           |      | Aujus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t nme                                                        | 00                                                      | - Minut                                                                    | c.,     |
| DST Ending                                                                                                                                                                                          |                                                                                                                    |                                                                                 |                                                                                                                   |                                                             |                                                         |                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                         |                                                                            |         |
| Jan                                                                                                                                                                                                 | ~ 1                                                                                                                | Day                                                                             | 0                                                                                                                 | Hour                                                        | 0                                                       | Mir                                                            | n    | Adjus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Time                                                       | 60                                                      | Minut                                                                      | es      |
| Format 2<br>DST Start<br>Jan                                                                                                                                                                        | √ 1st                                                                                                              | ``````````````````````````````````````                                          | / Sun                                                                                                             |                                                             | √ at                                                    | 0                                                              |      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Adju                                                         | st Time                                                 | 60                                                                         | Minutes |
| DST Start                                                                                                                                                                                           | √ 1st                                                                                                              | ``                                                                              | / Sun                                                                                                             | ,                                                           | √ at                                                    | 0                                                              | :    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Adju                                                         | st Time                                                 | 60                                                                         | Minutes |
| DST Start<br>Jan                                                                                                                                                                                    | <ul> <li>✓ 1st</li> <li>✓ 1st</li> </ul>                                                                           | ~                                                                               | / Sun                                                                                                             |                                                             | ✓ at                                                    | _                                                              | ]:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | st Time<br>st Time                                      | 60                                                                         | Minutes |
| DST Start<br>Jan<br>DST Ending                                                                                                                                                                      |                                                                                                                    | \<br>\                                                                          |                                                                                                                   |                                                             | _                                                       | _                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                         |                                                                            |         |
| DST Start<br>Jan<br>DST Ending                                                                                                                                                                      |                                                                                                                    | ~                                                                               |                                                                                                                   |                                                             | _                                                       | _                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                         |                                                                            |         |
| DST Start<br>Jan<br>DST Ending<br>Jan                                                                                                                                                               | √ 1st                                                                                                              | ~                                                                               |                                                                                                                   |                                                             | at                                                      | _                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Adju                                                         |                                                         | 60                                                                         |         |
| DST Start<br>Jan<br>DST Ending<br>Jan                                                                                                                                                               | ✓ 1st                                                                                                              | 02                                                                              | / Sun                                                                                                             | 000                                                         | - at                                                    | : 0<br>D-00 00                                                 |      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ] Adju                                                       | st Time                                                 | 60                                                                         | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>OU Seasons<br>07-01 01<br>00-00 00                                                                                                                         | √ 1st                                                                                                              | 02                                                                              | / Sun                                                                                                             | 000                                                         | - at                                                    | . 0                                                            |      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ] Adju                                                       | st Time                                                 | 60                                                                         | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>OU Seasons<br>07-01 01<br>00-00 00<br>olidays                                                                                                              | 1st       10-01 (       00-00 (                                                                                    | 02                                                                              | 00-00                                                                                                             | 0 00                                                        | - at                                                    | : 0<br>D-00 00                                                 |      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Adju<br>0 00<br>0 00                                         | st Time                                                 | 60<br>0 00<br>0 00                                                         | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>DU Seasons<br>07-01 01<br>00-00 00<br>olidays<br>00-00 00                                                                                                  | 1st                                                                                                                | 02                                                                              | 00-00<br>00-00                                                                                                    | 0 00 00 00 00 00 00 00 00 00 00 00 00 0                     | _ at                                                    | 0-00 00                                                        |      | 00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Adju<br>0 00<br>0 00                                         | st Time                                                 | 60<br>0 00<br>0 00<br>0 00                                                 | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>OU Seasons<br>07-01.01<br>00-00.00<br>00-00.00<br>00-00.00                                                                                                 | 1st       10-01 (       00-00 (       00-00 (                                                                      | 02<br>00<br>00                                                                  | 00-00<br>00-00<br>00-00                                                                                           | 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                    | _ at                                                    | D-00 00<br>D-00 00<br>D-00 00                                  |      | 00-000-000-000-000-000-000-000-0000-0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adju<br>0 00<br>0 00<br>0 00<br>0 00                         | st Time 00-01 00-01 00-01 00-01 00-01                   | 60<br>0 00<br>0 00<br>0 00                                                 | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>OU Seasons<br>07-01.01<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00                                                                                     | 1st       10-01 (       00-00 (       00-00 (       00-00 (                                                        | D2<br>D2<br>D0<br>D0<br>D0<br>D0<br>D0                                          | 00-00<br>00-00<br>00-00<br>00-00<br>00-00                                                                         | 0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00                | _ at                                                    | 0-00 00<br>0-00 00<br>0-00 00<br>0-00 00                       |      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Adju<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00                 | st Time 00-0 00-0 00-0 00-0 00-0 00-0 00-0              | 60<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00                         | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>DU Seasons<br>07-01.01<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00                                                                         | 1st       10-01 (       00-00 (       00-00 (       00-00 (       00-00 (       00-00 (                            | 02<br>00<br>00<br>00<br>00<br>00                                                | Sun<br>00-00<br>00-00<br>00-00<br>00-00<br>00-00                                                                  | 0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00        | _ at                                                    | D-00 00<br>D-00 00<br>D-00 00<br>D-00 00<br>D-00 00            |      | 0-00-00-00-00-00-00-00-00-00-00-00-00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adju<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00         | st Time 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 | 60<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00 | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>OU Seasons<br>07-01.01<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00                                                                                     | 1st       10-01 (       00-00 (       00-00 (       00-00 (                                                        | 02<br>00<br>00<br>00<br>00<br>00                                                | 00-00<br>00-00<br>00-00<br>00-00<br>00-00                                                                         | 0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00        | _ at                                                    | 0-00 00<br>0-00 00<br>0-00 00<br>0-00 00                       |      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Adju<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00         | st Time 00-0 00-0 00-0 00-0 00-0 00-0 00-0              | 60<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00 | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>U Seasons<br>07-01.01<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00                                                              | 1st       10-01 (       00-00 (       00-00 (       00-00 (       00-00 (       00-00 (       00-00 (              | 02<br>00<br>00<br>00<br>00<br>00                                                | Sun<br>00-00<br>00-00<br>00-00<br>00-00<br>00-00                                                                  | 0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00        | _ at                                                    | D-00 00<br>D-00 00<br>D-00 00<br>D-00 00<br>D-00 00            |      | 0-00-00-00-00-00-00-00-00-00-00-00-00-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Adju<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00         | st Time 00-01 00-01 00-01 00-01 00-01 00-01 00-01 00-01 | 60<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00 | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>OU Seasons<br>07-01.01<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00 | <pre>&gt; 1st 10-01 ( 00-00 ( 00-00 ( 00-00 ( 00-00 ( 00-00 ( 00-00 ( 11-1))))))))))))))))))))))))))))))))))</pre> | 00<br>00<br>00<br>00<br>00<br>00                                                | <ul> <li>Sun</li> <li>00-00</li> <li>00-00</li> <li>00-00</li> <li>00-00</li> <li>00-00</li> <li>00-00</li> </ul> | 0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 0 | _ at                                                    | D-00 00<br>D-00 00<br>D-00 00<br>D-00 00<br>D-00 00<br>D-00 00 |      | 00-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-000-0000 | Adju<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00 | st Time                                                 | 60<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00                 | Minutes |
| DST Start<br>Jan<br>DST Ending<br>Jan<br>U Seasons<br>07-01.01<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00<br>00-00.00                                                              | 1st       10-01 (       00-00 (       00-00 (       00-00 (       00-00 (       00-00 (       00-00 (              | 22<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | Sun<br>00-00<br>00-00<br>00-00<br>00-00<br>00-00                                                                  | 0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 0 | <pre>_ at _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0</pre> | D-00 00<br>D-00 00<br>D-00 00<br>D-00 00<br>D-00 00            |      | 00-0 00-0 00-0 00-0 00-0 00-0 15:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adju<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00         | st Time                                                 | 60<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0            | Minutes |

Figure 4-11 TOU Settings page





### **TOU Settings**

- Season: The maximum season number is 14. Each season will operate on the TOU Schedule it is configured to.
- Schedule: The maximum schedule number is 8, where this parameter determines the number of TOU schedules available for the TOU calendar setting. Each schedule can be divided up into time segments and assigned a tariff.
- Segment: A segment is included in a schedule where each schedule can have up to a maximum of 14 time segments. Each segment is assigned a tariff.
- Tariff: The KW1850 supports up to 4 tariffs in the TOU function. The range is 1-4 for this setting where 1 means 1 tariff and 4 means all 4 tariffs are used.
  - 1. Sharp
  - 2. Sharp, Peak
  - 3. Sharp, Peak, Valley
  - 4. Sharp, Peak, Valley, Normal
- Weekend: Allows users to assign how many days are considered weekend days. The range is 1-8 for this setting.
- Holiday: A maximum of 30 holidays can be programmed to the TOU calendar. If the holiday setting parameter is set as 3, the first 3 slots of the holiday schedule must be set, otherwise, it will be considered as an invalid input (TOU function will be disabled). If the weekend and public holidays are overlapped, the public holiday overrides the weekend setting, the holiday has a higher priority.
- Fault Status Word: Will display a hex word if there is an error present in the TOU settings. This word should read 0 if all settings are correct.

### **Billing Mode**

- Monthly Billing Mode: Users can select the monthly billing according to their billing requirement, where the billing mode can be at the end of every month or a specific time and date. The format for the time method is DD HH:MM:SS.
  - In this section users can enable the TOU function in the Acuvim II meter by checking the box from the software. Users also have the option to restore the TOU setting back to its default settings from this section.





#### Daylight saving time (DST):

The KW1850 meter can adjust for the Daylight Savings Time. The DST can then be selected to follow one of two formats:

- 1. **Fixed date option** If you choose a fixed date option, you set the format according to a fixed date for the DST switch. The format is Month/ Day/ Hour/ Minute/ adjusted time (in minutes).
- Non-Fixed date option If you choose the non-fixed option, DST will be implemented by which day of which week is selected. The format is Month/ Which Day/ Which week/ Hour/ Minute/ adjusted time (in minutes).

#### **TOU Seasons Settings**

Enter the start date into the TOU season table slot following format **MM-DD-ID**.

- MM stands for month (range is from 1 to 12)
- DD stands for date/day (range is from 1 to 31)
- ID represents the TOU schedule to run (range is from 1-14)

The dates should be organized so that they are in sequence according to the calendar year (the earlier date comes first and the later date comes last). For example, if 2 seasons are selected, the date parameters are March 31 and November 4, and TOU schedule 01, 02 will be used respectively, the first TOU season table slot shall enter 03-31 01, and the second slot shall enter 11-04 02. With this configuration the first season would be form March 31st to November 4th, and the second season would be from November 4th to March 31st.

#### **TOU Schedule Settings**

Similar to TOU season format, enter the start time into the TOU schedule table slot following this format HH: MM ID:

- HH stands for hour (range is in 24 hour format, 0 to 24 hours)
- MM stands for minutes (range is from 00 to 60 minutes)
- ID stands for tariffs (available from 00 to 03).





The time should be organized according to the hour sequence. For example, if 3 segments are configured, timing parameters are 01:00, 15:30, 22:45, the order of the 3 segments should be one of the following: 01:00, 15:30, 22:45 or 15:30, 22:45, 01:00 or 22:45, 01:00, 15:30. Entering time information in a wrong sequence (for example, entering 15:30, 01:00, 22:45) is considered as an invalid operation and the TOU function will be disabled.

In the figure below TOU Schedule #1 can be described as follows:

- . From 12AM to 11AM all energy consumed will be accumulate under the Sharp Tariff (Tariff ID 1)
- From 11AM to 5PM all energy consumed will be accumulated under the Peak Tariff (Tariff ID 2) .
- From 5PM to 6PM all energy consumed will be accumulated under the Valley Tariff (Tariff ID 3)
- From 6PM to 8PM all energy consumed will be accumulated under the Normal Tariff (Tariff ID 4)
- From 8PM to 11AM all energy consumed will be accumulated under the Sharp Tariff (Tariff ID 1)

| OU Schedule ; | #1         |          |          |          |          |          |
|---------------|------------|----------|----------|----------|----------|----------|
| 00:00 01      | 11:00 02   | 17:00 03 | 18:00 04 | 22:00 01 | 00:00 00 | 00:00 00 |
| 00:00 00      | 00:00 00   | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 |
| OU Schedule a | #2         |          |          |          |          |          |
| 07:00 04      | 10:00 02   | 11:00 01 | 00:00 01 | 00:00 01 | 00:00 01 | 00:00 01 |
| 00:00 01      | 00:00 01   | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 |
| OU Schedule : | ¥3         |          |          |          |          |          |
| 00:00 00      | 00:00 00   | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 |
| 00:00 00      | 00:00 00   | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 |
| OU Schedule ; | <b>#</b> 4 |          |          |          |          |          |
| 00:00 00      | 00:00 00   | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 | 00:00 00 |
| 00:00 00      | 00:00 00   | 00:00 00 | 00:00 00 | 00.00.00 | 00:00 00 | 00:00 00 |





#### **Holidays Settings**

The KW1850 supports holiday configuration within its TOU function, where a maximum of 30 holidays can be programmed to the TOU calendar. Users can program the amount of holidays within the TOU calendar by entering a number from 0-30 on the holiday setting in the General section of the TOU settings. For example if the holiday setting parameter is set as 3, the first 3 slots of the holiday schedule must be set, otherwise, it will be considered as an invalid input (TOU function will be disabled).

To configure the Holiday timing users must set the the holiday schedule, which uses the same format as the TOU seasons "MMDD ID". Users can select which TOU schedule to be used for the holiday. The dates of the holiday schedule do not need to be organized in sequential order (i.e. the first slot can be January 1, the second slot can be December 26 and the third slot can be December 25).

#### **Ten Year Holiday Setting**

Users can preset holidays for the upcoming 10 years via the meter software. Since the holiday dates change as the years go by this feature allows users to preset the dates. Select **Ten Year Holiday** under the **Settings** tab in order to view the settings.

The holiday format MM-DD ID, where the ID number is the schedule number to use for that holiday. User can input all the holidays in the **Make Holiday Settings (10 year)** option located on the bottom of the page. Users can enter in the holiday dates, holiday code and Schedule setting number. The holiday codes are defined as follows:

- 0 Holiday only occurs once
- 1 Holiday occurs on the same date each year
- 2 Holiday occurs on the first Sunday on or after the date entered
- 3 Holiday occurs on the first Monday on or after the date entered
- 4 Holiday occurs on the first Thursday on or after the date entered
- 5 Holiday moved from Sunday to Monday
- 6 Holiday moved from Saturday to Friday or Sunday to Monday





TOU Holiday Code Defination

| 1.                      | 12/25/2020                                                                 | 1 | $\sim$   | 1 ~ | 18. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 35. | 00/00/2000 | 0 | $\sim$ | 1 | $\sim$ |
|-------------------------|----------------------------------------------------------------------------|---|----------|-----|-----|------------|-------------------|--------------|-------------------|-----------------|-----|------------|---|--------|---|--------|
| 2.                      | 05/24/2020                                                                 | 2 | $\sim$   | 1 ~ | 19. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 36. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 3.                      | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 20. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 37. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 4.                      | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 21. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 38. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 5.                      | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 22. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 39. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 6.                      | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 23. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 40. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 7.                      | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 24. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 41. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 8.                      | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 25. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 42. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 9.                      | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 26. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 43. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 10.                     | 00/00/2000                                                                 | 0 | $\sim$   | 1 ~ | 27. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 44. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 11.                     | 00/00/2000                                                                 | 0 | $\sim$ 1 | L ~ | 28. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 45. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 12.                     | 00/00/2000                                                                 | 0 | $\sim 1$ | - v | 29. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 46. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 13.                     | 00/00/2000                                                                 | 0 | $\sim$ 1 | L ~ | 30. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 47. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 14.                     | 00/00/2000                                                                 | 0 | $\sim$ 1 | L ~ | 31. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 48. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 15.                     | 00/00/2000                                                                 | 0 | $\sim$ 1 | L ~ | 32. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 49. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 16.                     | 00/00/2000                                                                 | 0 | $\sim 1$ | L ~ | 33. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          | 50. | 00/00/2000 | 0 | ~      | 1 | ~      |
| 17.                     | 00/00/2000                                                                 | 0 | ~ 1      | ~   | 34. | 00/00/2000 | 0                 | $\sim$       | 1                 | $\sim$          |     |            |   |        |   |        |
| -<br>Holiday<br>Holiday | ode explain:<br>only occurs once<br>same date each y<br>nday on or after d |   |          |     |     |            | t thurs<br>day mo | day o<br>wed | on or a<br>from S | after<br>Sun. t |     | to Mon.    |   |        |   |        |

Figure 4-13 TOU Holiday Code Definition

Once all the holidays are entered in the TOU Holiday Code definition users can click on **Generate** to automatically populate and load all the holidays in the 10 year holiday settings. If the current year of the meter does not fall into the Ten year Holiday setting, it remains as the current TOU settings.

**NOTE**: The holiday schedule has the highest priority among all the schedules. The weekend schedule's priority is followed by the Holiday schedule. When the holiday schedule is not enabled, the weekend schedule has the highest priority, overriding the normal (weekday) schedule.



Х

| tting | gs > Power Meter >  | Ten Years Holiday |                |          |          |          |    |
|-------|---------------------|-------------------|----------------|----------|----------|----------|----|
| Ē     | 🖉 Enable Holidays Y | ears Settings     |                |          |          |          |    |
| -     | tart Year 20        |                   | Ending Year 2  | 019      |          |          |    |
|       | 20                  |                   |                |          |          |          |    |
| ⊡1s   | t Year Holidays     |                   |                |          |          |          |    |
| 1     | 01-01 1             | 02-01 2           | 03-01 3        | 04-01 4  | 05-01 5  | 00-00 00 | 6  |
| 7     | 00-00 00            | 00-00 00          | 00-00 00       | 00-00 00 | 00-00 00 | 00-00 00 | 12 |
| 13    | 00-00 00            | 00-00 00          | 00-00 00       | 00-00 00 | 00-00 00 | 00-00 00 | 18 |
| 19    | 00-00 00            | 00-00 00          | 00-00 00       | 00-00 00 | 00-00 00 | 00-00 00 | 24 |
| 25    | 00-00 00            | 00-00 00          | 00-00 00       | 00-00 00 | 00-00 00 | 00-00 00 | 30 |
|       |                     |                   |                |          | ·,       |          | 1  |
| Se    | ettings Year 20     | 10 Ho             | liday Number 5 |          |          |          |    |
| -2n   | nd Year Holidays    |                   |                |          |          |          | _  |
| 1     | 01-01 1             | 02-01 2           | 03-01 3        | 04-01 4  | 05-01 5  | 06-016   | 6  |
| 7     | 07-01 7             | 08-018            | 09-019         | 10-01 10 | 00-00 00 | 00-00 00 | 12 |
| 13    | 00-00 00            | 00-00 00          | 00-00 00       | 00-00 00 | 00-00 00 | 00-00 00 | 18 |
| 19    | 00-00 00            | 00-00 00          | 00-00 00       | 00-00 00 | 00-00 00 | 00-00 00 | 24 |
| 25    | 00-00 00            | 00-00 00          | 00-00 00       | 00-00 00 | 00-00 00 | 00-00 00 | 30 |
|       |                     |                   |                |          |          |          |    |

Figure 4-14 Ten Year Holiday Configuration

## 4.6 IO Functions

KW1850 has 2 Relay Outputs (RO), 18 Digital Inputs (DI) and 6 Digital Outputs (DO). To configure the IO setting on the meter click on **DI**, **RO and Event** under the **Settings** tab on the left panel of Acuview. From this page users can configure the Digital Input and Relay Output settings.

#### 4.6.1 Digital Input

The KW1850 supports two Digital Input mode, Digital Status mode and Pulse Counter mode.

By default the digital input mode is configured for digital status mode where the status can be either ON/OFF, this is represented by **State** on the Acuview software. The Digital Input is a dry contact meaning a voltage is required to change the status of the DI. When the DI detects a sufficient voltage input the status will be ON, otherwise the status will remain as OFF.





#### **DI Ratings:**

- Input Style: Dry Contact
- Input Current (Max): 2mA
- Input Voltage Range: 15-30Vdc
- Start Voltage: 12V
- Stop Voltage: 10V
- Pulse Frequency (Max): 100Hz, 50% Duty Cycle

Users can configure the DI as Pulse Counter under the DI type section in the Acuview software. Once the mode is changed to **Counter** user can configure how many pulses equals one count on the meter. For example in figure 4-15 below DI1 is configured for 10 pulses to equal 1 count.

Users can also configure the scaling of the DI count, for example in figure 4-15 below DI1 is configured for 1 count to equal 0.50 m3. The DI unit available to configure from Acuview are **t** (tonne), **m3** (cubic meters), **kWh** (energy), **RMB** (Renminbi), and **\$** (dollar).

| Settings > P | ower Mete | r > C  | DI, RO a | nd Event  |          |      |     |        |             |
|--------------|-----------|--------|----------|-----------|----------|------|-----|--------|-------------|
| DI Type      |           |        |          |           |          |      |     |        |             |
| DI1          | Counter   | $\sim$ | 10       | Pulse = 1 | 1 Unit = | 0.50 | m3  | $\sim$ | Clear DI1   |
| DI2          | Counter   | $\sim$ | 100      | Pulse = 1 | 1 Unit = | 1.00 | kWh | $\sim$ | Clear DI2   |
| DI3          | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | RMB | $\sim$ | Clear DI3   |
| DI4          | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | \$  | $\sim$ | Clear DI4   |
| DI5          | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI5   |
| DI6          | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI6   |
| DI7          | State     | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   |        | Clear DI7   |
| DI8          | State     | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI8   |
| DI9          | State     | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI9   |
| DI 10        | State     | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   |        | Clear DI 10 |
| DI11         | State     | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI11  |
| DI12         | State     | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   |        | Clear DI12  |
| DI13         | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI13  |
| DI14         | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI14  |
| DI15         | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI15  |
| DI 16        | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI 16 |
| DI17         | Counter   | $\sim$ | 1        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI17  |
| DI 18        | Counter   | $\sim$ | 2        | Pulse = 1 | 1 Unit = | 1.00 | t   | $\sim$ | Clear DI 18 |

Figure 4-15 Digital Input Settings





To view the DI pulse count or DI status click on **DI and RO** under the **Readings** tab on the the left panel of Acuview.

| DI 1:  | 8   | 4.00 m3 | DI 2:  | 2   | 2.00 kWh | DI 3:  | 3   | 3.00 RMB | DI 4:  | 4   | 4.00 \$ |
|--------|-----|---------|--------|-----|----------|--------|-----|----------|--------|-----|---------|
| DI 5:  | 5   | 5.00 t  | DI 6:  | 6   | 6.00 t   | DI 7:  | OFF |          | DI 8:  | OFF |         |
| DI 9:  | OFF |         | DI 10: | OFF |          | DI 11: | OFF |          | DI 12: | OFF |         |
| DI 13: | 4   | 0.00 t  | DI 14: | 18  | 0.00 t   | DI 15: | 16  | 0.00 t   | DI 16: | 16  | 0.00 t  |
| DI 17: | 19  | 0.00 t  | DI 18: | 20  | 0.00 t   |        |     |          |        |     |         |
|        |     |         |        |     |          |        |     |          |        |     |         |

Figure 4-16 DI Readings

#### 4.6.2 Relay Output

The relay output has two modes that it can operate as in the KW1850, either control or alarm mode.

- 1. Control Mode: Allows users to manually control relay ON/OFF.
  - Momentary Mode: Allows users to manually turn on relay for a certain time period. The time can be configured from 50-3000ms.
- 2. Alarm Mode: Users can configure the over/under alarm to trigger the relay outpt. Users can also use the system event alarm to trigger the relay output in this mode.

There are 12 types of system event alarms that users can trigger the relay with.

- 1. Reset
- 2. DI Synchronization Demand
- 3. Command Synchronization Demand
- 4. Reset energy
- 5. Reset Device Run Time
- 6. Reset Battery Run Time
- 7. Modify System Parameters
- 8. Set Initial Energy
- 9. Modify TOU Settings
- 10. Modify System Clock
- 11. Reversed Power Direction
- 12. Reset DI Pulse Count





Users can configure and enable these events to trigger the relay. The over/under alarms will be explained in a later section of the manual.

The relay alarm drive output time ranges can be configured on this page also, it ranges from 1~60000s (how long will it take to turn off the output by itself).

| RO Type                        | RO Output Mo | de          |                      |  |
|--------------------------------|--------------|-------------|----------------------|--|
| RO1 Alarm ~                    | RO1          | Mome        | entary 🗸 🗸           |  |
| RO2 Relay Control ~            | RO2          | RO2 Momenta |                      |  |
| KOZ Keldy Control V            | RO Pulse Wi  | idth 3000   | ms                   |  |
| System Event Alarm             |              | Enable      | Output               |  |
| Reset                          |              |             | Relay 1 $\sim$       |  |
| DI Synchronization Demand      |              |             | Relay 1 $\sim$       |  |
| Command Synchronization Demand |              |             | Relay 1 $\sim$       |  |
| Reset Energy                   |              |             | Relay 1 🛛 🗸          |  |
| Reset Device Run-Time          |              |             | Relay 1 $\sim$       |  |
| Reset Bettery Run-Time         |              |             | Relay 1 $\sim$       |  |
| Modify System Parameters       |              |             | Relay 1 $\sim$       |  |
| Set Initial Energy             |              |             | Relay 1 $\sim$       |  |
| Modify TOU Settings            |              |             | Relay 1 🛛 🗸          |  |
| Modify Clock                   |              |             | Relay 1 🛛 🗸          |  |
| Reverse Power                  |              |             | Relay 1 🗸 🗸 🗸        |  |
| Reset DI Pulse Counter         |              |             | Relay 1 $\checkmark$ |  |
| RO Alarm Output Time 60 S      |              |             |                      |  |
|                                |              |             | Update Device        |  |

Figure 4-17 Relay Output Settings





Users can view the status of the relay on the **DI and RO** page under the **Readings** tab on Acuview. If the relay is configured for relay control mode users can manually turn ON/OFF the relay by clicking on the **Control** button. If in alarm mode this function is blocked on the software.

| DI and RO         Relay 1: OFF         Control         Relay 2: OFF         Control           Energy         Demand         Alam Log         Alam Log <td< th=""><th>_</th><th>Readings &gt; DI and RO</th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                            | Readings > DI and RO |                  |          |                  |                  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|------------------|----------|------------------|------------------|--|
| Alem tog<br>System Event by<br>Device Information         DI 1:         8         4.00 m3         DI 2:         2         2.00 t         DI 3:         3         3.00 t         DI 4:         4         4.00 t           Data tog<br>Device Information         DI 5:         5         5.00 t         DI 6:         6         6.00 t         DI 7:         OFF         DI 8:         OFF           Di 9:         OFF         DI 10:         OFF         DI 11:         OFF         DI 12:         OFF           DI 13:         4         0.00 t         DI 14:         18         0.00 t         DI 15:         16         0.00 t           DI 17:         19         0.00 t         DI 8:         20         0.00 t         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V </td <td>Real-Time Metering<br/> DI and RO<br/> Energy<br/> Demand</td> <td>Relay 1: OFF</td> <td>Control</td> <td>Relay 2:</td> <td>OFF Control</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Real-Time Metering<br>DI and RO<br>Energy<br>Demand                          | Relay 1: OFF         | Control          | Relay 2: | OFF Control      |                  |  |
| DI 13: 4 0.00 t DI 14: 18 0.00 t DI 15: 16 0.00 t DI 16: 16 0.00 t<br>DI 17: 19 0.00 t DI 18: 20 0.00 t<br>Pulse Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Harmonics<br>Alarm Log<br>System Event Log<br>Data Log<br>Device Information |                      |                  |          |                  |                  |  |
| DI 17: 19 0.00 t DI 18: 20 0.00 t<br>Pulse Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              | DI 9: OFF            | DI 10: OFF       |          | DI 11: OFF       | DI 12: OFF       |  |
| Pulse Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | DI 13: 4 0           | .00 t DI 14: 18  | 0.00 t   | DI 15: 16 0.00 t | DI 16: 16 0.00 t |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              | DI 17: 19 0          | 0.00 t DI 18: 20 | 0.00 t   |                  |                  |  |
| Name         Category         Reading         Unit           Image: Image |                                                                              | Pulse Input          |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              | Name                 | Category         | Reading  | Unit             |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |                      |                  |          |                  |                  |  |

Figure 4-18 Relay Output Readings

#### 4.6.3 Digital Output

The KW1850 has 6 Digital Outputs channels where the meter will output energy pulses. The DO settings can be configured from the **General Settings** page on Acuview.

Users can configure each channel to output pulses based on energy, either the total energy or individual circuit energy consumption.

Energy pulse settings include Pulse Constant and Pulse Width. The pulse Constant's range is 1-60000, and the Pulse Width range is 20-100 ms. In practical applications, Pulse Constant and Pulse Width should be set according to the system's real power, otherwise, it will influence the system's energy accuracy.





Pulse Period = 3600000 /(Real Power x Pulse Constant)

Pulse Period > Pulse Width

The following equation must be fulfilled in order to ensure the energy accuracy, the unit of Real Power is kW, Pulse Width is in ms.

3600000 /(Real Power x Pulse Constant)> Pulse Width

For example, if the Real Power is 35.2 kW, Pulse Width = 3600000 /(35.2 x Pulse Constant), it must meet 3600000 /(35.2 x Pulse Constant)>Pulse Width.

| Secur  | ity                                    | Communication   |                                      |            |     |
|--------|----------------------------------------|-----------------|--------------------------------------|------------|-----|
| (      | Change Password                        | Address 101     | <ul> <li>Baud Rate</li> </ul>        | 19200 ~    | bps |
|        |                                        | Address 2 1     | <ul> <li>Parity</li> </ul>           | None1 ~    |     |
|        |                                        | Net Module Type | Baud Rate 2                          | 38400 ~    | bps |
|        | nel of Energy Pulse                    | WiFi ~          | Parity 2                             | None1 ~    |     |
| DO1    |                                        | Energy Pulse    | DI Synchronous Dema                  | and        |     |
| DO2    |                                        |                 | DI Trigger Condition                 |            | ~   |
| DO3    | Ep_a (CH101)                           |                 |                                      | DI1        | ~   |
| DO4    | Ep_a (CH101)                           | V               | DI Sync-Source                       | DII        | ~   |
| DO5    | Ep_a (CH101)                           | ✓ Rated Voltage | Demand Type                          |            |     |
| DO6    | Ep_a (CH101)                           | ✓ 220 V         | Sliding Window Dem                   | and        | ~   |
| -      | ethod 1 (True)<br>ethod 2 (Generalized | () IEEE         | Averaging Interval W<br>Sub-Interval |            | min |
| Displa | y                                      |                 |                                      |            |     |
| Auto   | -cycle Start Time                      | 1 🗭 min         | Power Decimal 3                      | 3          |     |
| Auto   | -cyde Show Time                        | 5 🔹 S           | Turn On the Backlight                | 1 🔹 min    |     |
| Non-S  | Standard Seal Option                   | ns of Seals     |                                      |            |     |
| De     | evice Run-Time                         |                 | Communication F                      | Parameters |     |
| De     | vice Clock                             |                 | Network Parame                       | ters       |     |
| De     | evice Clock + TOU R                    | elated          | RO Related                           |            |     |
|        |                                        |                 |                                      |            |     |

Figure 4-19 Digital Output Settings





### 4.7 Alarm

The KW1850 supports over/under alarms where the meter can have up to 10 alarms configured. Users can configure this by clicking on **Alarm** under the **Settings** tab on Acuview.

Users can alarm for either the individual circuit channels or alarm for the meter total (inline), this can be configured in the category drop down menu. The following category options are available:

- Real-Time Metering (Incoming) active power, reactive power, apparent power, frequency, voltage, current, power factor of the incoming line
- Real-Time Metering (User) active power, reactive power, apparent power, current, power factor of the individual circuits
- Demand (Incoming) active power, reactive power, apparent power, current demand and demand prediction
- Demand (User) active power, reactive power, apparent power, current demand and demand prediction of the individual circuits

After the category is selected, users can then select the desired alarming parameter in the parameter drop down menu. Once configured select the setting for the alarm, this can be over (>), under(<), or equal.

The setpoint value will be a percentage of the rated value and not the actual measurement value. The current rating and voltage rating refer to the rated voltage and current value of the load, which are used to generate the alarm target value. For example, suppose the voltage rating is 220V, the CT rating is 20A, and the user wants to alarm when the active power is over 3kW. Since the rated power is 4.4kW and 3kW is 68% of 4.4kW, the alarm target value is set to 68.

Users have the option to set a delay for the alarms, where the alarm will trigger after the delay time has passed. The default is 0 which means there is no delay and the alarm will trigger as soon as it occurs. The delay time range is from 0-30000 ms.

If the relay mode is configured for Alarm mode, users can use the over/under alarms to trigger the relay output. Users can select RO1 or RO2 from the output drop down menu.





| Limit<br>ID | Enable | Alarm C                      | Chan   | nel                    | :      | Sett | ing    | Setpoint | Delay (ms) | Outpu | Jt     |
|-------------|--------|------------------------------|--------|------------------------|--------|------|--------|----------|------------|-------|--------|
| #1          |        | Real-Time Metering(Incoming) | $\sim$ | Frequency              | ~      | >    | $\sim$ | 40       | 0          | RO1   | $\sim$ |
| #2          |        | Real-Time Metering(User)     | $\sim$ | Watt A (CH102)         | $\sim$ | >    | $\sim$ | 10 %     | 0          | None  | $\sim$ |
| #3          |        | Real-Time Metering(Incoming) | $\sim$ | Volts AN               | $\sim$ | >    | $\sim$ | 100 %    | 0          | None  | $\sim$ |
| #4          |        | Real-Time Metering(Incoming) | $\sim$ | IA                     | $\sim$ | <    | $\sim$ | 50 %     | 0          | None  | $\sim$ |
| #5          |        | Demand(Incoming)             | $\sim$ | Watt A                 | $\sim$ | >    | $\sim$ | 25 %     | 0          | RO2   | $\sim$ |
| #6          |        | Real-Time Metering(User)     | $\sim$ | Watt Total (CH305/205) | $\sim$ | >    | $\sim$ | 1 %      | 0          | None  | $\sim$ |
| #7          |        | Real-Time Metering(Incoming) | $\sim$ | Watt Total             | $\sim$ | >    | $\sim$ | 0 %      | 0          | None  | $\sim$ |
| #8          |        | Real-Time Metering(Incoming) | $\sim$ | Watt Total             | $\sim$ | >    | $\sim$ | 0 %      | 0          | None  | $\sim$ |
| #9          |        | Real-Time Metering(Incoming) | $\sim$ | Watt Total             | $\sim$ | >    | $\sim$ | 0 %      | 0          | None  | $\sim$ |
| #10         |        | Real-Time Metering(Incoming) | $\sim$ | Watt Total             | $\sim$ | >    | $\sim$ | 0 %      | 0          | None  | $\sim$ |

Figure 4-20 Alarm Settings

The alarms can be read in the **Alarm Log** under the **Readings** tab on Acuview. The alarm record shows the time of the alarm, the alarm parameter, the limit value exceeded or restored value, the alarm state and the alarm rule. Up to 20 alarms can be recorded, and will override from the oldest alarm entry (first in, first out).

The software displays the newest alarm record number and allows users to reset the alarm log using the **Clear Alarm** button.

| No. | Time Stamp          | ms  | Alarm Channel           | Value | Status | Limit ID | ^ |
|-----|---------------------|-----|-------------------------|-------|--------|----------|---|
| 1   | 2020-09-08 11:41:21 | 517 | R1> Frequency (Incomi   | 40    | Reset  | 1        |   |
| 2   | 2020-09-08 11:41:21 | 524 | R1> Frequency (Incomi   | 60    | Alarm  | 1        |   |
| 3   | 2020-09-08 11:41:21 | 834 | R1> Frequency (Incomi   | 39    | Reset  | 1        |   |
| 4   | 2020-09-08 11:41:21 | 899 | R1> Frequency (Incomi   | 60    | Alarm  | 1        |   |
| 5   | 2020-09-08 11:41:23 | 193 | R1> Frequency (Incomi   | 39    | Reset  | 1        |   |
| 6   | 2020-09-08 11:41:23 | 244 | R1> Frequency (Incomi   | 60    | Alarm  | 1        |   |
| 7   | 2020-09-08 11:41:49 | 8   | R1> Frequency (Incomi   | 38    | Reset  | 1        |   |
| 8   | 2020-09-08 11:41:49 | 61  | R1> Frequency (Incomi   | 53    | Alarm  | 1        |   |
| 9   | 2020-06-25 12:23:01 | 57  | R1> Frequency (Incomi   | 0     | Reset  | 1        |   |
| 10  | 2020-06-25 12:23:01 | 64  | R1> Volts AN (Incoming) | 0 %   | Reset  | 3        |   |
| 11  | 2020-09-08 11:39:49 | 774 | R1> Volts AN (Incoming) | 4 %   | Alarm  | 3        |   |
| 12  | 2020-09-08 11:39:49 | 788 | R1> Frequency (Incomi   | 60    | Alarm  | 1        |   |
| 13  | 2020-09-08 11:40:29 | 62  | R1> Frequency (Incomi   | 18    | Reset  | 1        |   |
| 14  | 2020-09-08 11:40:29 | 130 | R1> Frequency (Incomi   | 62    | Alarm  | 1        |   |
| 15  | 2020-09-08 11:40:29 | 316 | R1> Frequency (Incomi   | 0     | Reset  | 1        |   |
| 16  | 2020-09-08 11:40:29 | 371 | R1> Volts AN (Incoming) | 0 %   | Reset  | 3        |   |
| 17  | 2020-09-08 11:40:36 | 533 | R1> Volts AN (Incoming) | 4 %   | Alarm  | 3        |   |
| 18  | 2020-09-08 11:40:36 | 582 | R1> Frequency (Incomi   | 59    | Alarm  | 1        |   |

Figure 4-21 Alarm Log

82



**NOTE**: The limit value displayed by the tool software is not the actual measurement value, but the percentage of the actual measurement value to the rated value.

#### 4.8 System Event Log

The event log captures and record significant events that occur in the KW1850 meter. The log records the time and type of system event. The following are the event types that the KW1850 supports:

- 1. Reset
- 2. DI Synchronization Demand
- 3. Command Synchronization Demand
- 4. Reset energy
- 5. Reset Device Run Time
- 6. Reset Battery Run Time
- 7. Modify System Parameters
- 8. Set Initial Energy
- 9. Modify TOU Settings
- 10. Modify System Clock
- 11. Reversed Power Direction
- 12. Reset DI Pulse Count

Up to 100 records can be displayed, users can choose to display **the latest 20 records** or **all records**. The event log can be reset by using the **Clear Event** button.





. . . . .

| lo. | Time Stamp          | System Event |                     |
|-----|---------------------|--------------|---------------------|
| 3   | 2020-09-22 12:10:00 | Set Clock    |                     |
| 4   | 2020-09-22 12:15:01 | Set Clock    |                     |
| 5   | 2020-09-22 12:20:01 | Set Clock    |                     |
| 6   | 2020-09-22 12:25:00 | Set Clock    |                     |
| 7   | 2020-09-22 12:30:00 | Set Clock    |                     |
| 8   | 2020-09-22 12:35:01 | Set Clock    |                     |
| 9   | 2020-09-22 12:40:00 | Set Clock    |                     |
| 0   | 2020-09-22 12:45:01 | Set Clock    |                     |
| 1   | 2020-09-22 12:50:01 | Set Clock    |                     |
| 2   | 2020-09-22 12:55:01 | Set Clock    |                     |
| 3   | 2020-09-22 13:00:00 | Set Clock    |                     |
| 4   | 2020-09-22 13:05:01 | Set Clock    |                     |
| 5   | 2020-09-22 13:10:00 | Set Clock    |                     |
| 6   | 2020-09-22 13:15:00 | Set Clock    |                     |
| 7   | 2020-09-22 13:20:01 | Set Clock    |                     |
| 8   | 2020-09-22 13:25:00 | Set Clock    |                     |
| 9   | 2020-09-22 13:30:01 | Set Clock    |                     |
| 0   | 2020-09-22 13:35:00 | Set Clock    |                     |
| 1   | 2020-09-22 13:40:00 | Set Clock    |                     |
| 2   | 2020-09-22 13:45:01 | Set Clock    |                     |
|     |                     |              |                     |
|     |                     |              |                     |
|     |                     |              |                     |
|     |                     |              |                     |
|     |                     |              |                     |
|     |                     |              |                     |
| New | vest Record No.     | 73           | Clear Event Save    |
|     | Newest 20 Records   |              |                     |
| -   | All Records         |              |                     |
| 0   | All Records         |              | Retrieve Event Stop |

Figure 4-22 Event Log

## 4.9 Data Log

The KW1850 includes 8MB of memory that is used for data logging. This allows users to log data and retrieve it from the Acuview software. In order to configure the meter to data log using the internal memory select **Data Log 1/Data Log 2/Data Log 3** from the **Settings** tab on Acuview. The KW1850 has 3 data logs, where each can be configured individually and the three logs cab be configured with different parameters.

There are 114 different parameters that can be logged ranging from Real Time Metering, Energy, TOU Energy, Demand, and DI. Users can log either the incoming (inline) or individual circuit parameters. The memory size of the 3 data logs can also be set, but the total number of memory sectors of the 3 records should not be greater than 100.





## Chapter <u>4: Functions & Software</u>

| 🖉 Acuview 3.6.0 Accuenergy | Corporation - [AcuRev 2120 (COM29,1)]                       |
|----------------------------|-------------------------------------------------------------|
| Operation Settings Toc     | ls Window Help                                              |
| 🕯 🕸 o 🗁 🔂 🔂 🏤 (            | 3 📙 🗆 🖻   🕅 🗛 🔹 🧳 ?                                         |
| Readings Settings          | Settings > Power Meter > Data Log 1                         |
| Power Meter                |                                                             |
| General                    | Data Log 1 Settings                                         |
| ···· User and CT           |                                                             |
| ··· DI, RO and Event       | Real-Time Metering(Incoming)                                |
| Alarm<br>Net Module        | Frequency                                                   |
| Net Module 2               | Volts AN<br>Volts BN                                        |
| Data Log 1                 | Volts CN<br>Volts LN Average                                |
| Data Log 2<br>Data Log 3   | Volts AB                                                    |
| TOU                        | Volts BC<br>Volts CA                                        |
| Ten Years Holiday          | Volts LL Average                                            |
| Pulse Input                | I A << Remove                                               |
|                            | I C<br>I Average                                            |
|                            | Watt Total Clear All                                        |
|                            | VAR Total                                                   |
|                            | Pwr Factor Total                                            |
|                            | Load Total<br>Watt A                                        |
|                            | Registers and Sectors                                       |
|                            | Registers 0 Total Bytes Used 0                              |
|                            | Sectors 0 (Drag the bar to control) Bytes Remaining 228     |
|                            | Max Records 0                                               |
|                            | Other                                                       |
|                            | 0 20 40 60 80 100                                           |
|                            | Logging Interval 0 min                                      |
|                            | Logging Mode                                                |
|                            | Start Logging Immediately, No Stop (first-in first-out)     |
|                            | Start Logging at 0 Hour 0 Min, No Stop (first-in first-out) |
|                            | Start Logging at 2000/ 1/ 1 ▼ 0:00:00 ♀ ,                   |
|                            | Stop at 2000/ 1/ 1 ▼ 0:00:00 🚔 (or till memory is full)     |
|                            |                                                             |

Figure 4-23 Data Log Settings

Different parameters can be set between the 3 data logs according to user requirements. For example, data log 1 can be set as basic measurement parameters (such as power), data log 2 can be set as energy parameters, and data log 3 can be set as demand parameters.





Generally, setting a data log requires setting the following:

- Parameter selection Choose one of the 8 categories, different wiring methods will be different
- Select parameters
  - Select the relevant parameter in the left selection box
  - Click the Add button, the selected parameter will be added to the selected box on the right.
  - If you want to delete an item, select the parameter you want to delete in the selected box, and then click Delete.
- In the Space Allocation section, users can view the number of registers in the record, the number of bytes that have been used in this record, and the number of remaining bytes. These areas are automatically increased according to the parameters you choose. The total number of bytes that can be used is 228.
- Set the Logging Interval Users can set the logging interval from 0-1440 minutes. When the interval is selected as 0 the data log function is disabled.
- Set data log sector size The sector size can be selected from 0-100, but the total sector size of the 3 data logs must not exceed 100.
- Select the Logging Mode:
  - Start Logging Immediately This mode uses a first in-first out method where once the data log is full the oldest data log entry will be overrided by the newest log entry.
  - Start Time This mode allows users to configure a start time for the data log. The meter will begin logging at the time specified in this setting. Once the log is full it will start to override from the oldest entry.
  - Time Range This mode allows users to configure the meter to log data during a specific time period. Users can configure the start and stop time for logging. If the meters memory is full before the stop time the meter will stop data logging.

#### 4.9.1 Reading the Data Log

The data log can be read by selecting **Data Log** under the **Readings** tab. On this page users will be able to the overview of the data which includes the first/last time stamp logged, max records, record size, and the amount of used records.





In the first drop down menu users can select one of the three data logs, and in the second drop down menu users can select the amount of records to read. The following options are available

- Read newest 50 records
- Read 1000 records
- Read 64000 records
- Read 1000 records (Select Time)
- Read 64000 records (Select Time)

Users can also set the record number to start reading the data log at. Click on **Read** to begin reading the data from the data log. There is an option to download the data from Acuview, users can save the data as a text, csv, or excel format file.

| ta Log 1 Data Log 2 Data Log 3                                                                                            |          |
|---------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                           |          |
| Aax Records 546100 Max Records 0 Max Records 0                                                                            |          |
| Jsed Records 19036 Used Records 0 Used Records 0                                                                          |          |
| tecord Size 12 Record Size 12 Record Size 12                                                                              |          |
| Vindow Status Normal Window Status Normal Window Status Normal                                                            |          |
| irst Record Time Stamp 2020-02-17 10:52:00 First Record Time Stamp 0001-01-01 00:00:00 First Record Time Stamp 0001-01-01 | 00:00:00 |
| ast Record Time Stamp 2020-09-22 15:05:00 Last Record Time Stamp 0001-01-0100:00:00 Last Record Time Stamp 0001-01-01     | 00:00:00 |
| Data Log 1 V Read newest 50 records V Start Record Num 1                                                                  |          |
| Save to File Read Stop                                                                                                    |          |
|                                                                                                                           | ^        |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |
|                                                                                                                           |          |

Figure 4-24 Reading the Data Log





## 4.10 Seal Button (B1) Function

The KW1850 supports a sealing function that allows user to prevent tampering of the meter settings. When the meter is sealed users cannot change or modify certain settings. There are two types of sealed parameters, standard and non stand parameters.

The sealed parameters include:

- Energy pulse constant
- Energy pulse width
- DO output energy channel selection
- Demand calculation method
- Demand interval window
- Demand sub-interval time
- DI synchronous demand trigger
- All user mapping relations
- Wiring mode
- 1-18 Channel CT Ratio
- Rated voltage
- DI trigger condition
- Reactive power calculation method
- VAR/PF protocol selection
- Clear energy/demand/DI
- All energy data
- Restore default parameters
- Non-standard seal function selection

The Non Standard sealed parameters include:

- RS485 Communication parameters
- Network Parameters
- Clear meter running time
- TOU parameters
- Relay Output Parameters
- Clock



Users can select the Non Standard seal options from the Acuview software in the General Settings.

| Security                                                                             | Communication                             |                                      |                |            |
|--------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------|------------|
| Change Password                                                                      | Address 101                               | Baud Rate                            | 19200 ~        | bps        |
| change rassinara                                                                     | Address 2 1                               | Parity                               | None1 ~        |            |
|                                                                                      | Net Module Type                           | Baud Rate 2                          | 38400 ~        | bps        |
| Channel of Energy Pulse                                                              | WiFi 🗸                                    | Parity 2                             | None1 ~        |            |
| DO1 Ep (CH301/201) ~                                                                 |                                           |                                      |                |            |
| DO2 Ep (Incoming) ~                                                                  | Energy Pulse                              | DI Synchronous Dema                  |                |            |
| DO3 Ep_a (CH101) V                                                                   | Const 50000                               | DI Trigger Condition                 | Do not trigger | ~          |
| DO4 Ep_a (CH101) V                                                                   | Width 20 ms                               | DI Sync-Source                       | DI1            | ~          |
| DO5 Ep_a (CH101) ~                                                                   | Rated Voltage                             | Demand Type                          |                |            |
| DO6 Ep_a (CH101) ~                                                                   | 220 V                                     | Sliding Window Dem                   | and            | ~          |
| Method 1 (True) Method 2 (Generalized)                                               | <ul> <li>● IEC</li> <li>○ IEEE</li> </ul> | Averaging Interval W<br>Sub-Interval | indow 15       | min<br>min |
| Display<br>Auto-cycle Start Time 1<br>Auto-cycle Show Time 5                         |                                           | wer Decimal                          |                |            |
| Non-Standard Seal Options o  Device Run-Time  Device Clock  Device Clock + TOU Relat |                                           | Communication F<br>Network Parame    |                |            |
| Device Clock + TOU Relat                                                             | ed                                        | RO Related                           |                |            |

Figure 4-25 Configuring the Non-Standard Seal Options





#### 4.10.1 How to use the Seal Button (B1)

By default the KW1850 is sealed, in order to unseal the meter press B1. Users will notice that on the display screen on the settings page certain settings will have a lock-shaped symbol on the top right corner of the display. After pressing B1 the meter will be unsealed for 1 hour where the lock symbol will now show as an unlocked symbol. After the 1 hour has passed the meter will go back to being sealed. During the 1 hour when the meter is unsealed the meter can be sealed again by pressing B1.

**NOTE**: When operating the B1 button, you must first ensure that the B1 button is in a state that allows parameter modification.

## 4.11 Device Information

Users can view the meters information from the Acuview by clicking on Device Information under the Readings tab. This provides users with information such as device type, hardware/ software version, serial number, device clock, device run time and communications module firmware information.

| Acuview 3.6.3 Accuenergy                                                                                                                              | Corporation - [AcuRev 2110 (192.168.1.161,1)]                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation Settings Tools                                                                                                                              | Window Help                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |
| 🏶 💡 🖈 🎫 🔯 🛔                                                                                                                                           | 8 💷   8 🗉 🗟   🎦 🗛 🔹 🔷 🂔                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |
| Readings Settings                                                                                                                                     | Readings > Device Information                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |
| - Real-Time Metering<br>- DI and RO<br>- Energy<br>- Demand<br>- Harmonics<br>- Alarm Log<br>- System Event Log<br>- Data Log<br>- Device Information | Device Type HS11 (AcuRev 2110)<br>Hardware Version 1.01<br>Software Version 1.01<br>Release Date 2020-02-27<br>Serial Number EHM20020001<br>Model AcuRev 2110<br>Manufacturer Accuenergy<br>Seals Status <b>Open</b><br>Allow Programming Yes | Display Module       Device Type     SC11       Hardware Version     1.01       Software Version     1.01       Release Date     2020-02-26       Net Module     Device Type       Device Type     WA       Hardware Version     1.00       Software Version     1.00       Release Date     2020-03-26 |
|                                                                                                                                                       | Device Run-Time 1150.32 Hours<br>Device Clock 2020-09-14 09:16:46, MON                                                                                                                                                                        | Reset Device Run-Time Set Device Clock  Use PC Time  2000-01-01  12:00:00 AM                                                                                                                                                                                                                            |

Figure 4-26 Device Information





Users can reset the meters run time from this page and also configure the meter clock. The device clock can be set manually or according to the computer time, users can click on Set Device Clock for the clock configuration to take affect.





# **Chapter 5: Communication**

## **5.1 MODBUS Protocol Introduction**

5.1.1 Transmission Mode 5.1.2 Protocol 5.1.3 CRC Check

## **5.2 Modbus Communication Format**

5.2.1 Read Relay Output status (Function Code 01) 5.2.2 Read the status of DI (Function Code 02) 5.2.3 Read Data (Function Code 03) 5.2.4 Control Relay Output 5.2.5 Preset/Reset Multi-Register

5.3 KW1850 Application Details and Parameter Address Table 5.3.1 Type of Data 5.3.2 Correspondence Between Communication Value and Actual Value 5.3.3 Address Table

## **Chapter 5: Communication**

KW1850 supports the mainstream open communication protocol Modbus.

The standard configuration is Modbus-RTU protocol, this manual only lists the address table under this protocol.

## **5.1 MODBUS Protocol Introduction**

KW1850 uses the MODBUS-RTU communication protocol. The MODBUS protocol defines the check code, data sequence, etc., which are necessary for specific data exchange.

#### 5.1.1 Transmission Mode

The transmission mode is a series of independent data structures within a data frame and limited rules for data transmission. The transmission mode compatible with the MODBUS-RTU protocol mode is defined below.

| Coding System  | 8-bit                            |  |  |
|----------------|----------------------------------|--|--|
| Start bit      | 1-bit                            |  |  |
| Stop bit       | 1-bit                            |  |  |
| Data bits      | 8-bit                            |  |  |
| Error checking | CRC (Cyclic Redundancy Check)    |  |  |
| Parity         | No parity/odd parity/even parity |  |  |

#### 5.1.2 Protocol

When a data frame arrives at the terminal device, it enters the addressed device through a simple "port", the device removes the "envelope" (data header) of the data frame, reads the data, and if there is no error, it executes the data transfer. The requested task, then, adds the data it generates to the obtained "envelope" and returns the data frame to the sender. The returned response data contains the following content: the terminal slave address (Address), the executed command (Function), the requested data (Data) generated by executing the command, and a check code (Check). There will be no successful response if any error occurs.





#### 1. Frame Format

#### Table 5-1 Data Frame Format

| Address | Function | Data      | Check  |  |
|---------|----------|-----------|--------|--|
| 08-bit  | 8-bit    | N * 8-bit | 16-bit |  |

#### 2. Address Field

The address field is at the start of the frame. It is composed of 1 byte (8 bits), its decimal value range is 0-247.

A master addresses a slave by placing the slave address in the address field of the message. When the slave sends its response, it places its own address in this address field of the response to let the master know which slave is responding.

#### 3. Function Field

When a message is sent from a master to a slave device the function code field tells the slave what kind of action to perform.

#### Table 5-2 Function Code

| Code | Meaning                      | Action                                                               |
|------|------------------------------|----------------------------------------------------------------------|
| 01   | Read DO status               | Obtain Digital (Relay) Output current status (ON/OFF)                |
| 02   | Read DI status               | Obtain Digital Input current status (ON/OFF)                         |
| 03   | Read Data                    | Obtain current binary value from one or more registers               |
| 05   | Control DO                   | Control Digital (Relay) Output (ON/OFF)                              |
| 16   | Preset multiple<br>registers | Place specific value into a series of consecutive multiple-registers |





#### 4. Data Field

The Data field contains the data that terminals need to complete the request and the data that terminals respond to the request. This data may be a numerical value, address or setting. For example, Function Code tells the terminal to read one register, Data Field needs to specify reading from which register and how many registers to read.

#### 5. Error Check Field

The field allows the error check by master and slave devices. Due to electrical noise and other interferences, a group of data may be changed while transmitting from one location to the other. Error Check ensures master or slave devices do not respond to the distorted data during the transmission, which enhances system security and efficiency. Error Check uses 16bit Cyclic Redundancy Check (CRC 16).

#### 5.1.3 CRC Check

The cyclic redundancy check (CRC) field occupies two bytes and contains a 16-bit binary value. The CRC value is calculated by the transmitting device and then appended to the data frame. The receiving device recalculates the CRC value when receiving the data, and then compares it with the value in the received CRC field. If the two values are not equal, it will happen. error.

During the CRC operation, first preset a 16-bit register to all 1s, and then continuously calculate the 8 bits in each byte in the data frame with the current value of the register, only 8 data per byte Bit participates in generating CRC, start bit, stop bit and possible parity bit does not affect CRC. When generating the CRC, the 8 bits of each byte is XORed with the contents of the register, and then the result is shifted to the low bit, the high bit is supplemented with "0", and the least significant bit (LSB) is shifted out and checked. If it is 1, This register is XORed with a preset fixed value (0A001H). If the lowest bit is 0, no processing is done.

The above processing is repeated until 8 shift operations are performed. After the last bit (the 8th bit) is shifted, the next 8-bit byte is XORed with the current value of the register, and the other 8 above is also performed. When all the bytes in the data frame are processed, the final value generated is the CRC value.





The process of generating a CRC is:

- 1. Preset a 16-bit register as 0FFFFH (all 1s), which is called the CRC register.
- 2. Perform exclusive OR operation on the 8 bits of the first byte in the data frame and the low byte in the CRC register, and store the result back to the CRC register.
- 3. Shift the CRC register one bit to the right, fill the highest bit with 0, and move the lowest bit out and check.
- 4. If the lowest bit is 0: repeat the third step (the next shift); if the lowest bit is 1: connect the CRC register to a preset. The fixed value (0A001H) is XORed.
- 5. Repeat the third and fourth steps until 8 shifts. A complete eight bits are processed in this way.
- 6. Repeat steps 2 to 5 to process the next eight bits until all byte processing ends.
- 7. Swap the high and low bytes of the CRC register, the result is the CRC value.

## 5.2 Modbus Communication Format

The examples in this section will use the format shown in Table 5-3 as much as possible (the numbers are in hexadecimal).

Table 5-3 Protocol Example

| Address | Function | Data Start<br>Reg Hi | Data Start<br>Reg Lo | Data #of<br>Regs Hi | Data #of<br>Regs Lo | CRC16 Hi | CRC16 Lo |
|---------|----------|----------------------|----------------------|---------------------|---------------------|----------|----------|
| 06H     | 03H      | 00H                  | 00H                  | 00H                 | 21H                 | 84H      | 65H      |

#### Addr: Slave device address

Fun: Function Code

Data start reg hi: Start register address, high byte

Data start reg lo: Start register address, low byte

Data #of reg hi: Number of registers, high byte

Data #of reg lo: Number of registers, low byte

CRC16 Hi: CRC high byte

CRC16 Lo: CRC low byte





### 5.2.1 Read Relay Output status (Function Code 01) Query

The master device sends a query frame to the slave device. Function Code 01 allows users to acquire the relay output status (1=ON, 0=OFF) of the slave device with the specified address. On top of the slave device address and function code, the query frame must contain the relay register starting address and the number of registers to be read.

Table 5-4 depicts reading Relay 1 and Relay 2 status of the slave device with the address of 17.

Table 5-4 Query Frame of Reading Relay Output Status

| Address | Function | Relay Start<br>Reg Hi | Relay Start<br>Reg Lo | Relay #of<br>Regs Hi | Relay #of<br>Regs Lo | CRC16 Hi | CRC16 Lo |
|---------|----------|-----------------------|-----------------------|----------------------|----------------------|----------|----------|
| 11H     | 01H      | 00H                   | 00H                   | 00H                  | 02H                  | BFH      | 5BH      |

#### Response

The slave device answers the master device's query. The response frame contains a slave device address, function code, data quantity and CRC check. Each relay utilizes one bit (1 = ON, 0 = OFF). Table 5-5 depicts the response frame.

Table 5-5 Response frame of reading Relay Output status

| Address | Function | Byte Count | Data | CRC16 Hi | CRC16 Lo |
|---------|----------|------------|------|----------|----------|
| 11H     | 01H      | 01H        | 02H  | D4H      | 89H      |

Data Bytes

| 7   | 6 | 5 | 4 | 3 | 2 | 1 | 0   |
|-----|---|---|---|---|---|---|-----|
| 0   | 0 | 0 | 0 | 0 | 0 | 1 | 0   |
| MSB |   |   |   |   |   |   | LSB |

(Relay 1 = OFF, Relay 2=ON)





#### 5.2.2 Read the status of DI (Function Code 02) Query

On top of the slave device address and function code, the query frame must contain the digital input register starting address and the number of registers to be read. DI register address starts from 0000H (DI1=0000H, DI2=0001H, DI3=0002H, DI4=0003H).

Table 5-6 depicts reading DI1 to DI4 status of the slave device with the address of 17.

| Address | Function | DI Start<br>Addr Hi | Dl Start<br>Addr Lo | DI Num Hi | DI Num Lo | CRC16 Hi | CRC16 Lo |
|---------|----------|---------------------|---------------------|-----------|-----------|----------|----------|
| 11H     | 02H      | 00H                 | 00H                 | 00H       | 04H       | 7BH      | 59H      |

#### Response

The slave device answers the master device's query. The response frame contains a slave device address, function code, data quantity and CRC check. Each DI utilizes one bit (1 = ON, 0 = OFF). Table 5-7 depicts the response frame.

Table 5-7 Response Frame of Reading DI1 to DI4 Status

| Address | Function | Byte Count | Data | CRC16 Hi | CRC16 Lo |  |
|---------|----------|------------|------|----------|----------|--|
| 11H     | 02H      | 01H        | 03H  | E5H      | 49H      |  |

Data Bytes

| 0   | 0 | 0 | 0 | DI4 | DI3 | DI2 | DI1 |
|-----|---|---|---|-----|-----|-----|-----|
| 0   | 0 | 0 | 0 | 0   | 0   | 1   | 0   |
| MSB |   |   |   |     |     |     | LSB |



#### 5.2.3 Read Data (Function Code 03) Query

This function allows users to obtain the data and system parameters collected and recorded by the device.

The example in Table 5-8 is reading three basic data collected from the address 17 slave machine into line A real-time energy, line B real-time energy, and line C real-time energy (these parameters are dword data types, each parameter occupies two addresses, each address two bytes), the address of incoming line A real-time energy in KW1850 is 4500H, 4501H; incoming line B real-time energy address is 4502H, 4503H; incoming line C real-time energy address is 4504H,4505H.

Table 5-8 Query of Inline A Real-time Energy, Inline B Real-time Energy, Inline C Real-time Energy

| Address | Function | Data Start<br>Addr Hi | Data Start<br>Addr Lo | Data #of<br>Regs Hi | Data #of<br>Regs Lo | CRC16 Hi | CRC16 Lo |  |
|---------|----------|-----------------------|-----------------------|---------------------|---------------------|----------|----------|--|
| 11H     | 03H      | 45H                   | 00H                   | 00H                 | 06H                 | D2H      | 54H      |  |

#### Response

The response frame contains slave device address, function code, data quantity and CRC check.

Table 5-9 depicts Inline A real-time energy=0000000BH (1.1kWh), Inline B real-time

energy= 0000000CH (1.2kWh), Inline C real-time energy=0000000D (1.3kWh).

Table 5-9 Response of Inline A Real-time Energy, Inline B Real-time Energy, Inline C Real-time Energy

| Address | Function | Byte<br>Count | Data 1<br>Hi | Data 1<br>Lo | Data 2<br>Hi | Data 2<br>Lo | Data 3<br>Hi | Data 3<br>Lo | Data 4<br>Hi | Data 4<br>Lo |
|---------|----------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 11H     | 03H      | 0CH           | 00H          | 00H          | 00H          | 0BH          | 00H          | 00H          | 00H          | 0CH          |

| Data 5 Hi | Data 5 Hi Data 5 Lo |     | Data 6 Lo | CRC16 Hi | CRC16 Lo |  |
|-----------|---------------------|-----|-----------|----------|----------|--|
| 11H       | 02H                 | 01H | 03H       | E5H      | 49H      |  |





### 5.2.4 Control Relay Output (Function Code 05) Query

This query frame forces the relay status to ON or OFF. Data FF00H sets the relay as ON, and data 0000H sets the relay as OFF. The relay will not be influenced by any other data input.

The following is to query slave device 17 to set relay status is ON.

Table 5-10 Control Relay Status Query Frame

| Address | Function | DO Addr Hi | DO Addr Lo | Value Hi | Value Lo | CRC16 Hi | CRC16 Lo |  |
|---------|----------|------------|------------|----------|----------|----------|----------|--|
| 11H     | 05H      | 00H        | 00H        | FFH      | 00H      | 8EH      | AAH      |  |

#### Response

The correct response to this request is to send back the received data after the relay status is changed.

Table 5-11 Control Relay Status Response Frame

| Address | Function | DO Addr Hi | DO Addr Lo | Value Hi | Value Lo | CRC16 Hi | CRC16 Lo |  |
|---------|----------|------------|------------|----------|----------|----------|----------|--|
| 11H     | 05H      | 00H        | 00H        | FFH      | 00H      | 8EH      | AAH      |  |

#### 5.2.5 Preset/Reset Multi-Register (Function Code 16) Query

Function Code 16(10H Hex) allows the user to modify the contents of multiple registers.

The example below is a request to preset the device address of 17's channel #1's real-time energy as 12345.6 kWh. KW1850 energy is raw data multiplied by 0.1 kWh, therefore, the value written into the register should be 123456, hex format is 01E240H. Channel 1's real-time energy address is 4600H and 4601H, 32 bit, a total of 4 Bytes.

| Table 5-12 Preset Tenant #1's | Real-time Energy |
|-------------------------------|------------------|
|-------------------------------|------------------|

| Addro |   |     | Data Start<br>Reg Hi | Data Start<br>Reg Lo | Data #of<br>Regs Hi | Data #of<br>Regs Lo | Byte Count |  |
|-------|---|-----|----------------------|----------------------|---------------------|---------------------|------------|--|
| 111   | Н | 10H | 46H                  | 00H                  | 00H                 | 02H                 | 04H        |  |





| Value Hi Value Lo |     | Value Hi | Value Lo | CRC16 Hi | CRC16 Lo |  |
|-------------------|-----|----------|----------|----------|----------|--|
| 00H               | 02H | E2H      | 40H      | BEH      | B6H      |  |

#### Response

The correct response is to send back address, function code, data starting address, data bytes, CRC check after the value is changed.

Table 5-13 Preset Multi-register Response Frame

| Address | Function | Data Start<br>Reg Hi | Data Start<br>Reg Lo | Data #of<br>Regs Hi | Data #of<br>Regs Lo | CRC16 Hi | CRC16 Lo |
|---------|----------|----------------------|----------------------|---------------------|---------------------|----------|----------|
| 11H     | 10H      | 46H                  | 00H                  | 00H                 | 02H                 | 56H      | 10H      |

### 5.3 KW1850 Application Details and Parameter Address Table

There are several conventions of KW1850.

#### 5.3.1 Type of Data

"Bit" refers to binary bits.

"Word" is a 16-bit unsigned integer, occupying a data address. Two bytes. The value range is 0~65535.

"Int" is a 16-bit signed integer, occupying a data address. Two bytes. The value range is -32768~32767.

"Dword" is a 32-bit unsigned integer, occupying two data addresses. The high word comes first, and the low word comes after. A total of 4 bytes. Value range 0~4294967295; Rx = high word X65536 + low word.

"Float" is a single-precision floating-point number, occupying two data addresses. A total of 4 bytes. The value range is 0.0~3.402823E +38.





#### 5.3.2 Correspondence Between Communication Value and Actual Value

The communication value of the instrument is not necessarily equal to the actual value. There is a certain conversion relationship between them. This is very important. The production of the upper-level software must make it clear which conversion relationship is used for the collected parameters, otherwise, it will lead to wrong results.

#### Unit **Applicable Parameters** Correspondence The actual value is equal to System parameter No unit the communication value Meter and battery runtime T = Rx/100Hour The actual value is equal to Real clock, all time labels Time unit the communication value F = Rx/100kWh Energy Power R 0~65535 (0.01 accuracy) The actual value is equal to Demand kW the communication value The actual value is equal to Frequency Ηz the communication value The actual value is equal to Power factor No unit the communication value The actual value is equal to Volt Voltage the communication value The actual value is equal to Current Amp the communication value The actual value is equal to Harmonic parameters No unit the communication value Pulse count value Value=Rx/100 See specific settings

#### Table 5-14 Correspondence Between Communication Value and Actual Value





## 5.3.3 Address Table System Parameter Settings

| Address<br>(H) | Address<br>(D) | Parameters                                          | Range                                                | Default | Data<br>Type | Access<br>Property |
|----------------|----------------|-----------------------------------------------------|------------------------------------------------------|---------|--------------|--------------------|
| 800H           | 2048           | RS485 Device<br>Address                             | 1-247                                                | 1       | word         | R/W                |
| 801H           | 2049           | RS485 Modbus<br>Communication<br>Parity Bit Setting | 0: Even<br>1:Odd<br>2:None2<br>3:None1               | 3       | word         | R/W                |
| 802H           | 2050           | Channel<br>2 Modbus<br>Communication<br>Parity      | 0: Even<br>1:Odd<br>2:None2<br>3:None1               | 3       | word         | R/W                |
| 803H           | 2051           | RS485 Modbus<br>Communication<br>Baud Rate          | 1200-115200<br>When setting 115200,<br>write (11520) | 19200   | word         | R/W                |
| 804H           | 2052           | Channel<br>2 Modbus<br>Communication<br>Baud Rate   | 1200-115200<br>When setting 115200,<br>write (11520) | 38400   | word         | R/W                |
| 805H           | 2053           | Password                                            | 0000-9999                                            | 0000    | word         | R/W                |
| 806H           | 2054           | Energy Pulse<br>Constant                            | 1-60000                                              | 50000   | word         | R/W                |
| 807H           | 2055           | Energy Pulse<br>Width                               | 20-100ms                                             | 80      | word         | R/W                |
| 808H           | 2056           | Modbus TCP<br>Device Address                        | 1-247                                                | 1       | word         | R/W                |
| 809H           | 2057           | Reserved                                            |                                                      |         |              |                    |



103

| Address<br>(H)    | Address<br>(D)    | Parameters                         | Range                                                                   | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|------------------------------------|-------------------------------------------------------------------------|---------|--------------|--------------------|
| 80AH              | 2058              | Demand<br>Calculation<br>Method    | 0: Sliding Window<br>1: Rolling Window<br>2: Fixed Window<br>3: Thermal | 0       | word         | R/W                |
| 80BH              | 2059              | Demand Interval                    | 1-30 mins                                                               | 15      | word         | R/W                |
| 80CH              | 2060              | Demand<br>Sub-Interval             | 1-30mins                                                                | 1       | word         | R/W                |
| 80DH<br>-<br>827H | 2061<br>-<br>2087 | Reserved                           |                                                                         |         |              |                    |
| 828H              | 2088              | Relay Output<br>Mode               | bit0~bit1 corresponds to<br>RO1~RO2<br>0: Relay Control<br>1: Alarm     | 0       | word         | R/W                |
| 829H              | 2089              | RO Relay Control<br>Output Mode    | bit0~bit1to RO1~RO2<br>0: Latch<br>1: Momentary                         | 0       | word         | R/W                |
| 82AH              | 2090              | RO Relay Control<br>Momentary Time | 50-3000ms                                                               | 80      | word         | R/W                |
| 82BH              | 2091              | Alarm Enable                       | 0:Disable<br>1:Enable                                                   | 0       | word         | R/W                |
| 82CH              | 2092              | Alarm Channel<br>Enable 1-10       | Bit0-bit9 corresponds to<br>1-10<br>1: Enable<br>0: Disable             | 0       | word         | R/W                |
| 82DH              | 2093              | System Alarm<br>Event              | Bit0-15 corresponds to 16<br>Event<br>1: Enable<br>0: Disable           | 0       | word         | R/W                |





## Chapter 5: Communication

| Address<br>(H) | Address<br>(D) | Parameters                                                                                      | Range                                                                         | Default | Data<br>Type | Access<br>Property |
|----------------|----------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------|--------------|--------------------|
| 82EH           | 2094           | Relay Output<br>selection for first<br>8 System Alarm<br>Events                                 | 2 bytes, every 2 bits<br>corresponds to an event<br>00 Relay1<br>01 Relay2    | 0       | word         | R/W                |
| 82FH           | 2095           | Relay Output<br>selection for last<br>8 System Alarm<br>Events                                  | 22 bytes, every 2 bits<br>corresponds to an event<br>00: Relay1<br>01: Relay2 | 0       | word         | R/W                |
| 830H           | 2096           | Relay Output<br>Alarm time delay<br>(the over-limit<br>alarm does<br>not have this<br>function) | 1-60000s                                                                      | 60      | word         | R/W                |
| 831H           | 2097           | Backlight Time                                                                                  | 0-60mins                                                                      | 1       | word         | R/W                |
| 832H           | 2098           | Automatic<br>Display if no key<br>is pressed                                                    | Mins: 1-60                                                                    | 1       | word         | R/W                |
| 833H           | 2099           | Screen Display<br>Time per Screen                                                               | Seconds: 5-100                                                                | 5       | word         | R/W                |
| 834H           | 2100           | Display power<br>(demand)<br>decimal places                                                     | 3-4 decimal                                                                   | 3       | word         | R/W                |
| 835H           | 2101           | Reactive Power<br>Calculation<br>Method                                                         | 0: Real<br>1: Generalized                                                     | 0       | word         | R/W                |
| 836H           | 2102           | VAR/PF<br>Convention                                                                            | 0: IEC<br>1: IEEE                                                             | 0       | word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters                                                                          | Range                                                                                                                                                                                                                                                                                                              | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 837H              | 2103              | Clear all data<br>digits to clear all<br>records                                    | Set 1 to clear<br>Bit0: Clear current month<br>and historical electricity<br>Bit1: Clear demand<br>Bit2: Clear SOE record<br>Bit3: Clear the alarm record<br>Bit4: Clear the alarm record<br>Bit5: Clear the incident record<br>Bit5: Clear the meter runtime<br>Bit6: Clear the battery runtime<br>Bit7: Reserved | 0       | word         | R/W                |
| 838H<br>-<br>839H | 2104<br>-<br>2105 | The DI pulse<br>count value is<br>cleared, each bit<br>represents one<br>DI channel | 838 address bit0~bit15<br>corresponds to DI1~DI16<br>839 address bit0~<br>bit1corresponds to<br>DI17~DI18<br>0: No Clear<br>1: Clear                                                                                                                                                                               | 0       | word         | R/W                |
| 83AH<br>-<br>83EH | 2106<br>-<br>2110 | Reserved                                                                            |                                                                                                                                                                                                                                                                                                                    |         |              |                    |
| 83FH<br>-<br>841H | 2111<br>-<br>2113 | user01 user<br>name                                                                 | user name<br>(6 ASCII)                                                                                                                                                                                                                                                                                             | user01  | word         | R/W                |
| 842H              | 2114              | user01 Mapping                                                                      | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels                                                             | 0x0101  | word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters          | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 843H<br>-<br>845H | 2115<br>-<br>2117 | user02 user<br>name | user name (6 ASCII)                                                                                                                                                                                                                                    | user02  | word         | R/W                |
| 846H              | 2118              | user02 Mapping      | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0102  | word         | R/W                |
| 847H<br>-<br>849H | 2119<br>-<br>2121 | user03 user<br>name | user name (6 ASCII)                                                                                                                                                                                                                                    | user03  | word         | R/W                |
| 84AH              | 2122              | user03 Mapping      | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0103  | word         | R/W                |
| 84BH<br>-<br>84DH | 2123<br>-<br>2125 | user04 user<br>name | user name (6 ASCII)                                                                                                                                                                                                                                    | user04  | word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters                        | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 84EH              | 2126              | tuser04 Mapping                   | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0104  | word         | R/W                |
| 84FH<br>-<br>851H | 2127<br>-<br>2129 | user05 user user name (6 ASCII)   |                                                                                                                                                                                                                                                        | user05  | word         | R/W                |
| 852H              | 2130              | user01 Mapping<br>relations       | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0105  | Word         | R/W                |
| 853H<br>-<br>855H | 2131<br>-<br>2133 | user06 Mapping user name (6 ASCII |                                                                                                                                                                                                                                                        | user06  | Word         | R/W                |







| Address<br>(H)    | Address<br>(D)    | Parameters          | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 856H              | 2134              | user06 Mapping      | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0106  | Word         | R/W                |
| 857H<br>-<br>859H | 2135<br>-<br>2137 | user07 user<br>name | user name (6 ASCII)                                                                                                                                                                                                                                    |         | Word         | R/W                |
| 85AH              | 2138              | user07 Mapping      | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0107  | Word         | R/W                |
| 85BH<br>-<br>85DH | 2139<br>-<br>2141 | user08 user<br>name | user name (6 ASCII)                                                                                                                                                                                                                                    |         | Word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters                              | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 85EH              | 2142              | user08 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the use<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels  | 0x0108  | Word         | R/W                |
| 85FH<br>-<br>861H | 2143<br>-<br>2145 | user09 user<br>name user name (6 ASCII) |                                                                                                                                                                                                                                                        | user09  | Word         | R/W                |
| 862H              | 2146              | user09 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0109  | Word         | R/W                |
| 863H<br>-<br>865H | 2147<br>-<br>2149 | user10 user<br>name                     | user name (6 ASCII)                                                                                                                                                                                                                                    |         | Word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters                              | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 866H              | 2150              | user10 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x010a  | Word         | R/W                |
| 867H<br>-<br>869H | 2151<br>-<br>2153 | user11 user<br>name user name (6 ASCII) |                                                                                                                                                                                                                                                        | user11  | Word         | R/W                |
| 86AH              | 2154              | user11 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x010b  | Word         | R/W                |
| 86BH<br>-<br>86DH | 2155<br>-<br>2157 | user12 user<br>name                     | user name (6 ASCII)                                                                                                                                                                                                                                    |         | Word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters                              | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 86EH              | 2158              | user12 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x010c  | Word         | R/W                |
| 86FH<br>-<br>871H | 2159<br>-<br>2161 | user13 user<br>name user name (6 ASCII) |                                                                                                                                                                                                                                                        | user13  | Word         | R/W                |
| 872H              | 2162              | user13 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x010d  | Word         | R/W                |
| 873H<br>-<br>875H | 2163<br>-<br>2165 | user14 user<br>name                     | user name (6 ASCII)                                                                                                                                                                                                                                    |         | Word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters          | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 876H              | 2166              | user14 Mapping      | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x010e  | Word         | R/W                |
| 877H<br>-<br>879H | 2167<br>-<br>2169 | user15 user<br>name | user name (6 ASCII)                                                                                                                                                                                                                                    |         | Word         | R/W                |
| 87AH              | 2170              | user15 Mapping      | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x010f  | Word         | R/W                |
| 87BH<br>-<br>87DH | 2171<br>-<br>2173 | user16 user<br>name | user name (6 ASCII)                                                                                                                                                                                                                                    | user16  | Word         | R/W                |





| Address<br>(H)    | Address<br>(D)    | Parameters                              | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|-------------------|-------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 87EH              | 2174              | user16 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0110  | Word         | R/W                |
| 87FH<br>-<br>881H | 2175<br>-<br>2177 | user17 user<br>name user name (6 ASCII) |                                                                                                                                                                                                                                                        | user17  | Word         | R/W                |
| 882H              | 2178              | user17 Mapping                          | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0111  | Word         | R/W                |
| 883H<br>-<br>885H | 2179<br>-<br>2181 | user18 user<br>name                     | user name (6 ASCII)                                                                                                                                                                                                                                    |         | Word         | R/W                |





| Address<br>(H) | Address<br>(D) | Parameters                                                      | Range                                                                                                                                                                                                                                                  | Default | Data<br>Type | Access<br>Property |
|----------------|----------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|--------------------|
| 886H           | 2182           | user18 Mapping                                                  | High byte:<br>0: The display module<br>does not display the user<br>1: The display module<br>displays the user<br>Low byte<br>0: Disable<br>1-18: corresponding<br>physical channel<br>19-24: Corresponding to<br>three-phase users of 1-6<br>channels | 0x0112  | Word         | R/W                |
| 887H           | 2183           | Rated voltage<br>setting (Only<br>relative to Alarm<br>Setting) | Default 220V                                                                                                                                                                                                                                           | 220     | Word         | R/W                |
| 888H           | 2184           | Wiring Mode                                                     | 0: 1LN<br>1: 3LN (Three-phase four-<br>wire)<br>2: 2LN (Single-phase<br>three-wire)                                                                                                                                                                    | 0       | Word         | R/W                |
| 889H           | 2185           | Channel 1<br>CT Rating                                          | 5-2000                                                                                                                                                                                                                                                 | 200     | Word         | R/W                |
| 88AH           | 2186           | Channel 2<br>CT Rating                                          | 5-2000                                                                                                                                                                                                                                                 | 200     | Word         | R/W                |
| 88BH           | 2187           | Channel 3<br>CT Rating                                          | 5-2000                                                                                                                                                                                                                                                 | 200     | Word         | R/W                |
| 88CH           | 2188           | Channel 4<br>CT Rating                                          | 5-2000                                                                                                                                                                                                                                                 | 200     | Word         | R/W                |
| 88DH           | 2189           | Channel 5<br>CT Rating                                          | 5-2000                                                                                                                                                                                                                                                 | 200     | Word         | R/W                |





| Address<br>(H) | Address<br>(D) | Parameters              | Range  | Default | Data<br>Type | Access<br>Property |
|----------------|----------------|-------------------------|--------|---------|--------------|--------------------|
| 88EH           | 2190           | Channel 6<br>CT Rating  | 5-2000 | 200     | Word         | R/W                |
| 88FH           | 2191           | Channel 7<br>CT Rating  | 5-2000 | 200     | Word         | R/W                |
| 890H           | 2192           | Channel 8<br>CT Rating  | 5-2000 | 200     | Word         | R/W                |
| 891H           | 2193           | Channel 9<br>CT Rating  | 5-2000 | 200     | Word         | R/W                |
| 892H           | 2194           | Channel 10<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 893H           | 2195           | Channel 11<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 894H           | 2196           | Channel 12<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 895H           | 2197           | Channel 13<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 896H           | 2198           | Channel 14<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 897H           | 2199           | Channel 15<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 898H           | 2200           | Channel 16<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 899H           | 2201           | Channel 17<br>CT Rating | 5-2000 | 200     | Word         | R/W                |
| 89AH           | 2202           | Channel 18<br>CT Rating | 5-2000 | 200     | Word         | R/W                |





#### **Clock Settings**

| Address (H)   | Address (D) | Parameters            | Access Property | Range                      | Data Type |
|---------------|-------------|-----------------------|-----------------|----------------------------|-----------|
| 1050H - 1051H | 4176 - 4177 | Meter<br>running time | R               | YYYY/<br>MM/DD<br>HH:MM:SS | dword     |

#### Clock

| Address (H) | Address (D) | Parameters     | Range                  | Data Type | Access Property |
|-------------|-------------|----------------|------------------------|-----------|-----------------|
| 1054H       | 4180        | Clock: Year    | 0-99                   | word      | R/W             |
| 1055H       | 4181        | Clock: month   | 1-12                   | word      | R/W             |
| 1056H       | 4182        | Clock: Day     | 1-31                   | word      | R/W             |
| 1057H       | 4183        | Clock: hour    | 0-23                   | word      | R/W             |
| 1058H       | 4184        | Clock: minutes | 0-59                   | word      | R/W             |
| 1059H       | 4185        | Clock: seconds | 0-59                   | word      | R/W             |
| 105AH       | 4186        | Clock: Week    | 0-6, 0 means<br>Sunday | word      | R/W             |

#### **Basic Measurement**

Note: Function code reading 03

| Address (H)                  | Address<br>(D)            | Parameters         | Description                      | Relationship | Property | Data Type | Access<br>Property |
|------------------------------|---------------------------|--------------------|----------------------------------|--------------|----------|-----------|--------------------|
| 2000H<br>-<br>2001H          | 8192<br>-<br>8193         | F                  | System Frequency                 | F=Rx         | Hz       | Float     | R                  |
| 2001H<br>2002H<br>-<br>2003H | 8193<br>8194<br>-<br>8195 | Phase 1<br>Voltage | Phase A Line-<br>Neutral Voltage | U1=Rx        | V        | Float     | R                  |
| 2004H<br>-<br>2005H          | 8196<br>-<br>8197         | Phase 2<br>Voltage | Phase B Line-<br>Neutral Voltage | U2=Rx        | V        | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                   | Description                                                        | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|------------------------------|--------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2006H<br>-<br>2007H | 8198<br>-<br>8199 | Phase 3<br>Voltage           | Phase C Line-<br>Neutral                                           | U3=Rx        | V        | Float     | R                  |
| 2008H<br>-<br>2009H | 8200<br>-<br>8201 | Average<br>Phase<br>Voltage  | Average Line-<br>Neutral Voltage                                   | Uavg=Rx      | V        | Float     | R                  |
| 200AH<br>-<br>200BH | 8202<br>-<br>8203 | Line Voltage<br>1-2          | Line-Line AB<br>Voltage                                            | U12=Rx       | V        | Float     | R                  |
| 200CH<br>-<br>200DH | 8204<br>-<br>8205 | Line Voltage<br>2-3          | Line-Line BC<br>Voltage                                            | U23=Rx       | V        | Float     | R                  |
| 200EH<br>-<br>200FH | 8206<br>-<br>8207 | Line Voltage<br>3-1          | Line-Line CA<br>Voltage                                            | U31=Rx       | V        | Float     | R                  |
| 2010H<br>-<br>2011H | 8208<br>-<br>8209 | Average<br>Line Voltage      | Average Line-Line<br>Voltage                                       | Ulavg=Rx     | V        | Float     | R                  |
| 2012H<br>-<br>2013H | 8210<br>-<br>8211 | Phase<br>A inline<br>Current | Sum of the Phase<br>A currents for all<br>circuits on the<br>meter | IL1=Rx       | A        | Float     | R                  |
| 2014H<br>-<br>2015H | 8212<br>-<br>8213 | Phase<br>B inline<br>Current | Sum of the Phase<br>B currents for all<br>circuits on the<br>meter | IL2=Rx       | A        | Float     | R                  |
| 2016H<br>-<br>2017H | 8214<br>-<br>8215 | Phase<br>C inline<br>Current | Sum of the Phase<br>C currents for all<br>circuits on the<br>meter | IL3=Rx       | A        | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                               | Description                                                           | Relationship  | Property | Data Type | Access<br>Property |
|---------------------|-------------------|------------------------------------------|-----------------------------------------------------------------------|---------------|----------|-----------|--------------------|
| 2018H<br>-<br>2019H | 8216<br>-<br>8217 | Average<br>inline<br>Current             | Average of the<br>Phase A, Phase B<br>and Phase C inline<br>currents  | ILavg=Rx      | A        | Float     | R                  |
| 201AH<br>-<br>201BH | 8218<br>-<br>8219 | Total inline<br>System<br>Power          | Sum of Phase A,<br>Phase B, and Phase<br>C inline Real Power          | Psum=Rx       | kW       | Float     | R                  |
| 201CH<br>-<br>201DH | 8220<br>-<br>8221 | Total inline<br>Reactive<br>Power        | Sum of Phase A,<br>Phase B, and Phase<br>C inline Reactive<br>Power   | Qsum=Rx       | kvar     | Float     | R                  |
| 201EH<br>-<br>201FH | 8222<br>-<br>8223 | Total inline<br>Apparent<br>Power        | Sum of Phase A,<br>Phase B, and Phase<br>C inline Apparent<br>Power   | Ssum=Rx       | kVA      | Float     | R                  |
| 2020H<br>-<br>2021H | 8224<br>-<br>8225 | Total inline<br>Power<br>Factor          | Average of Phase A,<br>Phase B, and Phase<br>C inline Power<br>Factor | PF=Rx         |          | Float     | R                  |
| 2022H<br>-<br>2023H | 8226<br>-<br>8227 | Total inline<br>System<br>Load<br>Nature | 1: R<br>2: L<br>3: C                                                  | LC=Rx         |          | Float     | R                  |
| 2024H<br>-<br>2025H | 8228<br>-<br>8239 | Phase A<br>inline Real<br>Power          | Sum of Phase A real<br>power for all circuits<br>on the meter         | Pa_<br>sum=Rx | kW       | Float     | R                  |
| 2026H<br>-<br>2027H | 8230<br>-<br>8231 | Phase B<br>inline Real<br>Powe           | Sum of Phase B real<br>power for all circuits<br>on the meter         | Pb_<br>sum=Rx | kW       | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                             | Description                                                                | Relationship  | Property | Data Type | Access<br>Property |
|---------------------|-------------------|----------------------------------------|----------------------------------------------------------------------------|---------------|----------|-----------|--------------------|
| 2028H<br>-<br>2029H | 8232<br>-<br>8233 | Phase C<br>inline Real<br>Powe         | Sum of Phase C real<br>power for all circuits<br>on the meter              | Pc_<br>sum=Rx | kW       | Float     | R                  |
| 202AH<br>-<br>202BH | 8234<br>-<br>8235 | Phase<br>A inline<br>Reactive<br>Power | Sum of Phase A<br>reactive power for<br>all circuits on the<br>meter       | Qa_<br>sum=Rx | kvar     | Float     | R                  |
| 202CH<br>-<br>202DH | 8236<br>-<br>8237 | Phase<br>B inline<br>Reactive<br>Power | Sum of Phase B<br>reactive power for<br>all circuits on the<br>meter       | Qb_<br>sum=Rx | kvar     | Float     | R                  |
| 202EH<br>-<br>202FH | 8238<br>-<br>8239 | Phase<br>C inline<br>Reactive<br>Power | Sum of Phase C<br>reactive power for<br>all circuits on the<br>meter       | Qc_<br>sum=Rx | kvar     | Float     | R                  |
| 2030H<br>-<br>2031H | 8240<br>-<br>8241 | Phase<br>A inline<br>Apparent<br>Power | Sum of Phase A<br>apparent power for<br>all circuits on the<br>meter       | Sa_<br>sum=Rx | kVA      | Float     | R                  |
| 2032H<br>-<br>2033H | 8242<br>-<br>8243 | Phase<br>B inline<br>Apparent<br>Power | Sum of Phase B<br>apparent power for<br>all circuits on the<br>meter       | Sb_<br>sum=Rx | kVA      | Float     | R                  |
| 2034H<br>-<br>2035H | 8244<br>-<br>8245 | Phase<br>C inline<br>Apparent<br>Power | Sum of Phase C<br>apparent power for<br>all circuits on the<br>meter       | Sc_<br>sum=Rx | kVA      | Float     | R                  |
| 2036H<br>-<br>2037H | 8246<br>-<br>8247 | Phase A<br>inline Power<br>Factor      | Average of the<br>Phase A Power<br>Factor for all circuits<br>on the meter | PFa=Rx        |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                        | Description                                                                                                               | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2038H<br>-<br>2039H | 8248<br>-<br>8249 | Phase B<br>inline Power<br>Factor | Average of the<br>Phase B Power<br>Factor for all circuits<br>on the meter                                                | PFb=Rx       |          | Float     | R                  |
| 203AH<br>-<br>203BH | 8250<br>-<br>8251 | Phase C<br>inline Power<br>Factor | Average of the<br>Phase C Power<br>Factor for all circuits<br>on the meter                                                | PFc=Rx       |          | Float     | R                  |
| 203CH<br>-<br>203DH | 8252<br>-<br>8253 | Phase A<br>inline Load<br>Nature  | Average of the<br>Phase A Load<br>Nature for all<br>circuits on the<br>meter                                              | LCa=Rx       |          | Float     | R                  |
| 203EH<br>-<br>203FH | 8254<br>-<br>8255 | Phase B<br>inline Load<br>Nature  | Average of the<br>Phase B Load<br>Nature for all<br>circuits on the<br>meter                                              | LCb=Rx       |          | Float     | R                  |
| 2040H<br>-<br>2041H | 8256<br>-<br>8257 | Phase C<br>inline Load<br>Nature  | Average of the<br>Phase C Load<br>Nature for all<br>circuits on the<br>meter                                              | LCc=Rx       |          | Float     | R                  |
|                     |                   | Single-Phase d                    | lata and Three-Phase / S                                                                                                  | Single-Three | Data     |           |                    |
| 2100H<br>-<br>2101H | 8448<br>-<br>8449 | Channel 1<br>Current              | Single Phase: Total<br>current in circuit<br>1Three Phase/<br>Single Phase-three<br>wire: Phase A<br>current in circuit 1 | l1=Rx        | A        | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2102H<br>-<br>2103H | 8450<br>-<br>8451 | Channel 1<br>Real Power        | Single Phase: Total<br>system power in<br>circuit 1 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>real power in circuit 1          | P1=Rx        | kW       | Float     | R                  |
| 2104H<br>-<br>2105H | 8452<br>-<br>8453 | Channel 1<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 1 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A reactive power in<br>circuit 1 | Q1=Rx        | kvar     | Float     | R                  |
| 2106H<br>-<br>2107H | 8454<br>-<br>8455 | Channel 1<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 1 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>apparent power in<br>circuit 1 | S1=Rx        | kVA      | Float     | R                  |
| 2108H<br>-<br>2109H | 8456<br>-<br>8457 | Channel<br>1 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 1 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A power factor in<br>circuit 1     | PF1=Rx       |          | Float     | R                  |
| 210AH<br>-<br>210BH | 8458<br>-<br>8459 | Channel<br>1 Load<br>Nature    | Single Phase: Load<br>nature of circuit<br>1Three Phase/<br>Single Phase-three<br>wire: Phase A load<br>nature of circuit 1                 | LC1=Rx       |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 210CH<br>-<br>210DH | 8460<br>-<br>8461 | Channel 2<br>Current           | Single Phase: Total<br>current in circuit 2<br>Three Phase/Single<br>Phase-three wire:<br>Phase B current in<br>circuit 1                   | I2=Rx        | A        | Float     | R                  |
| 210EH<br>-<br>210FH | 8462<br>-<br>8463 | Channel 2<br>Real Power        | Single Phase: Total<br>system power in<br>circuit 2 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>real power in circuit 1          | P2=Rx        | kW       | Float     | R                  |
| 2110H<br>-<br>2111H | 8464<br>-<br>8465 | Channel 2<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 2 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B reactive power in<br>circuit 1 | Q2=Rx        | kvar     | Float     | R                  |
| 2112H<br>-<br>2113H | 8466<br>-<br>8467 | Channel 2<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 2 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>apparent power in<br>circuit 1 | S2=Rx        | kVA      | Float     | R                  |
| 2114H<br>-<br>2115H | 8468<br>-<br>8469 | Channel<br>2 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 2 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B power factor in<br>circuit 1     | PF2=Rx       |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2116H<br>-<br>2117H | 8470<br>-<br>8471 | Channel<br>2 Load<br>Nature    | Single Phase: Load<br>nature of circuit 2<br>Three Phase/Single<br>Phase-three wire:<br>Phase B load nature<br>of circuit 1                 | LC2=Rx       |          | Float     | R                  |
| 2118H<br>-<br>2119H | 8472<br>-<br>8473 | Channel 3<br>Current           | Single Phase: Total<br>current in circuit 3<br>Three Phase/Single<br>Phase-three wire:<br>Phase C current in<br>circuit 1                   | I3=Rx        | A        | Float     | R                  |
| 211AH<br>-<br>211BH | 8474<br>-<br>8475 | Channel 3<br>Real Power        | Single Phase: Total<br>power in circuit 3<br>Three Phase/Single<br>Phase-three wire:<br>Phase C power in<br>circuit 1                       | P3=Rx        | kW       | Float     | R                  |
| 211CH<br>-<br>211DH | 8476<br>-<br>8477 | Channel 3<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 3 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C reactive power in<br>circuit 1 | Q3=Rx        | kvar     | Float     | R                  |
| 211EH<br>-<br>211FH | 8478<br>-<br>8479 | Channel 3<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 3 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>apparent power in<br>circuit 1 | S3=Rx        | kVA      | Float     | R                  |

124



| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2120H<br>-<br>2121H | 8480<br>-<br>8481 | Channel<br>3 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 3 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C power factor in<br>circuit 1     | PF3=Rx       |          | Float     | R                  |
| 2122H<br>-<br>2123H | 8482<br>-<br>8483 | Channel<br>3 Load<br>Nature    | Single Phase: Load<br>nature of circuit 3<br>Three Phase/Single<br>Phase-three wire:<br>Phase C load nature<br>of circuit 1                 | LC3=Rx       |          | Float     | R                  |
| 2124H<br>-<br>2125H | 8484<br>-<br>8485 | Channel 4<br>Current           | Single Phase: Total<br>current in circuit 4<br>Three Phase/Single<br>Phase-three wire:<br>Phase A current in<br>circuit 2                   | 14=Rx        | A        | Float     | R                  |
| 2126H<br>-<br>2127H | 8486<br>-<br>8487 | Channel 4<br>Real Power        | Single Phase: Total<br>power in circuit 4<br>Three Phase/Single<br>Phase-three wire:<br>Phase A power in<br>circuit 2                       | P4=Rx        | kW       | Float     | R                  |
| 2128H<br>-<br>2129H | 8488<br>-<br>8489 | Channel 4<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 4 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A reactive power in<br>circuit 2 | Q4=Rx        | kvar     | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 212AH<br>-<br>212BH | 8490<br>-<br>8491 | Channel 4<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 4 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>apparent power in<br>circuit 2 | S4=Rx        | kVA      | Float     | R                  |
| 212CH<br>-<br>212DH | 8492<br>-<br>8493 | Channel<br>4 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 4 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A power factor in<br>circuit 2     | PF4=Rx       |          | Float     | R                  |
| 212EH<br>-<br>212FH | 8494<br>-<br>8495 | Channel<br>4 Load<br>Nature    | Single Phase: Load<br>nature of circuit 4<br>Three Phase/Single<br>Phase-three wire:<br>Phase A load nature<br>of circuit 2                 | LC4=Rx       |          | Float     | R                  |
| 2130H<br>-<br>2131H | 8496<br>-<br>8497 | Channel 5<br>Current           | Single Phase: Total<br>current in circuit 5<br>Three Phase/Single<br>Phase-three wire:<br>Phase B current in<br>circuit 2                   | 15=Rx        | A        | Float     | R                  |
| 2132H<br>-<br>2133H | 8498<br>-<br>8499 | Channel 5<br>Real Power        | Single Phase: Total<br>power in circuit 5<br>Three Phase/Single<br>Phase-three wire:<br>Phase B power in<br>circuit 2                       | P5=Rx        | kW       | Float     | R                  |



| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2134H<br>-<br>2135H | 8500<br>-<br>8501 | Channel 5<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 5 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B reactive power in<br>circuit 2 | Q5=Rx        | kvar     | Float     | R                  |
| 2136H<br>-<br>2137H | 8502<br>-<br>8503 | Channel 5<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 5 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>apparent power in<br>circuit 2 | S5=Rx        | kVA      | Float     | R                  |
| 2138H<br>-<br>2139H | 8504<br>-<br>8505 | Channel<br>5 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 5 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B power factor in<br>circuit 2     | PF5=Rx       |          | Float     | R                  |
| 213AH<br>-<br>213BH | 8506<br>-<br>8507 | Channel<br>5 Load<br>Nature    | Single Phase: Load<br>nature of circuit 5<br>Three Phase/Single<br>Phase-three wire:<br>Phase B load nature<br>of circuit 2                 | LC5=Rx       |          | Float     | R                  |
| 213CH<br>-<br>213DH | 8508<br>-<br>8509 | Channel 6<br>Current           | Single Phase: Total<br>current in circuit 6<br>Three Phase/Single<br>Phase-three wire:<br>Phase C current in<br>circuit 2                   | l6=Rx        | A        | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 213EH<br>-<br>213FH | 8510<br>-<br>8511 | Channel 6<br>Real Power        | Single Phase: Total<br>power in circuit 6<br>Three Phase/Single<br>Phase-three wire:<br>Phase C power in<br>circuit 2                       | P6=Rx        | kW       | Float     | R                  |
| 2140H<br>-<br>2141H | 8512<br>-<br>8513 | Channel 6<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 6 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C reactive power in<br>circuit 2 | Q6=Rx        | kvar     | Float     | R                  |
| 2142H<br>-<br>2143H | 8514<br>-<br>8515 | Channel 6<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 6 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>apparent power in<br>circuit 2 | S6=Rx        | kVA      | Float     | R                  |
| 2144H<br>-<br>2145H | 8516<br>-<br>8517 | Channel<br>6 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 6 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C power factor in<br>circuit 2     | PF6=Rx       |          | Float     | R                  |
| 2146H<br>-<br>2147H | 8518<br>-<br>8519 | Channel<br>6 Load<br>Nature    | Single Phase: Load<br>nature of circuit 6<br>Three Phase/Single<br>Phase-three wire:<br>Phase C load nature<br>of circuit 2                 | LC6=Rx       |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2148H<br>-<br>2149H | 8520<br>-<br>8521 | Channel 7<br>Current           | Single Phase: Total<br>current in circuit 7<br>Three Phase/Single<br>Phase-three wire:<br>Phase A current in<br>circuit 3                   | I7=Rx        | A        | Float     | R                  |
| 214AH<br>-<br>214BH | 8522<br>-<br>8523 | Channel 7<br>Real Power        | Single Phase: Total<br>power in circuit<br>7Three Phase/<br>Single Phase-three<br>wire: Phase A<br>power in circuit 3                       | P7=Rx        | kW       | Float     | R                  |
| 214CH<br>-<br>214DH | 8524<br>-<br>8525 | Channel 7<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 7 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A reactive power in<br>circuit 3 | Q7=Rx        | kvar     | Float     | R                  |
| 214EH<br>-<br>214FH | 8526<br>-<br>8527 | Channel 7<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 7 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>apparent power in<br>circuit 3 | S7=Rx        | kVA      | Float     | R                  |
| 2150H<br>-<br>2151H | 8528<br>-<br>8529 | Channel<br>7 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 7 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A power factor in<br>circuit 3     | PF7=Rx       |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2152H<br>-<br>2153H | 8530<br>-<br>8531 | Channel<br>7 Load<br>Nature    | Single Phase: Load<br>nature of circuit 7<br>Three Phase/Single<br>Phase-three wire:<br>Phase A load nature<br>of circuit 3                 | LC7=Rx       |          | Float     | R                  |
| 2154H<br>-<br>2155H | 8532<br>-<br>8533 | Channel 8<br>Current           | Single Phase: Total<br>current in circuit 8<br>Three Phase/Single<br>Phase-three wire:<br>Phase B current in<br>circuit 3                   | 18=Rx        | A        | Float     | R                  |
| 2156H<br>-<br>2157H | 8534<br>-<br>8535 | Channel 8<br>Real Power        | Single Phase: Total<br>power in circuit 8<br>Three Phase/Single<br>Phase-three wire:<br>Phase B power in<br>circuit 3                       | P8=Rx        | kW       | Float     | R                  |
| 2158H<br>-<br>2159H | 8536<br>-<br>8537 | Channel 8<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 8Three<br>Phase/Single Phase-<br>three wire: Phase<br>B reactive power in<br>circuit 3  | Q8=Rx        | kvar     | Float     | R                  |
| 215AH<br>-<br>215BH | 8538<br>-<br>8539 | Channel 8<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 8 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>apparent power in<br>circuit 3 | S8=Rx        | kVA      | Float     | R                  |

130



| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                 | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 215CH<br>-<br>215DH | 8540<br>-<br>8541 | Channel<br>8 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 8Three<br>Phase/Single Phase-<br>three wire: Phase<br>B power factor in<br>circuit 3      | PF8=Rx       |          | Float     | R                  |
| 215EH<br>-<br>215FH | 8542<br>-<br>8543 | Channel<br>8 Load<br>Nature    | Single Phase: Load<br>nature of circuit 8<br>Three Phase/Single<br>Phase-three wire:<br>Phase B load nature<br>of circuit 3                 | LC8=Rx       |          | Float     | R                  |
| 2160H<br>-<br>2161H | 8544<br>-<br>8545 | Channel 9<br>Current           | Single Phase: Total<br>current in circuit 9<br>Three Phase/Single<br>Phase-three wire:<br>Phase C current in<br>circuit 3                   | I9=Rx        | A        | Float     | R                  |
| 2162H<br>-<br>2163H | 8546<br>-<br>8547 | Channel 9<br>Real Power        | Single Phase: Total<br>power in circuit 9<br>Three Phase/Single<br>Phase-three wire:<br>Phase C power in<br>circuit 3                       | P9=Rx        | kW       | Float     | R                  |
| 2164H<br>-<br>2165H | 8548<br>-<br>8549 | Channel 9<br>Reactive<br>Power | Single Phase: Total<br>reactive power<br>in circuit 9 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C reactive power in<br>circuit 3 | Q9=Rx        | kvar     | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                     | Description                                                                                                                                | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2166H<br>-<br>2167H | 8550<br>-<br>8551 | Channel 9<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 9Three<br>Phase/Single Phase-<br>three wire: Phase C<br>apparent power in<br>circuit 3 | S9=Rx        | kVA      | Float     | R                  |
| 2168H<br>-<br>2169H | 8552<br>-<br>8553 | Channel<br>9 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 9Three<br>Phase/Single Phase-<br>three wire: Phase<br>C power factor in<br>circuit 3     | PF9=Rx       |          | Float     | R                  |
| 216AH<br>-<br>216BH | 8554<br>-<br>8555 | Channel<br>9 Load<br>Nature    | Single Phase: Load<br>nature of circuit<br>9Three Phase/<br>Single Phase-three<br>wire: Phase C load<br>nature of circuit 3                | LC9=Rx       |          | Float     | R                  |
| 216CH<br>-<br>216DH | 8556<br>-<br>8557 | Channel 10<br>Current          | Single Phase: Total<br>current in circuit 10<br>Three Phase/Single<br>Phase-three wire:<br>Phase A current in<br>circuit 4                 | 110=Rx       | A        | Float     | R                  |
| 216EH<br>-<br>216FH | 8558<br>-<br>8559 | Channel 10<br>Real Power       | Single Phase: Total<br>power in circuit 10<br>Three Phase/Single<br>Phase-three wire:<br>Phase A power in<br>circuit 4                     | P10=Rx       | kW       | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2170H<br>-<br>2171H | 8560<br>-<br>8561 | Channel 10<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 10 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A reactive power in<br>circuit 4 | Q10=Rx       | kvar     | Float     | R                  |
| 2172H<br>-<br>2173H | 8562<br>-<br>8563 | Channel 10<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 10 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>apparent power in<br>circuit 4 | S10=Rx       | kVA      | Float     | R                  |
| 2174H<br>-<br>2175H | 8564<br>-<br>8565 | Channel<br>10 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 10 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A power factor in<br>circuit 4     | PF10=Rx      |          | Float     | R                  |
| 2176H<br>-<br>2177H | 8566<br>-<br>8567 | Channel<br>10 Load<br>Nature    | Single Phase: Load<br>nature of circuit 10<br>Three Phase/Single<br>Phase-three wire:<br>Phase A load nature<br>of circuit 4                 | LC10=Rx      |          | Float     | R                  |
| 2178H<br>-<br>2179H | 8568<br>-<br>8569 | Channel 11<br>Current           | Single Phase: Total<br>current in circuit 11<br>Three Phase/Single<br>Phase-three wire:<br>Phase B current in<br>circuit 4                   | l11=Rx       | A        | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 217AH<br>-<br>217BH | 8570<br>-<br>8571 | Channel 11<br>Real Power        | Single Phase: Total<br>power in circuit 11<br>Three Phase/Single<br>Phase-three wire:<br>Phase B power in<br>circuit 4                       | P11=Rx       | kW       | Float     | R                  |
| 217CH<br>-<br>217DH | 8572<br>-<br>8573 | Channel 11<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 11 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B reactive power in<br>circuit 4 | Q11=Rx       | kvar     | Float     | R                  |
| 217EH<br>-<br>217FH | 8574<br>-<br>8575 | Channel 11<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 11 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>apparent power in<br>circuit 4 | S11=Rx       | kVA      | Float     | R                  |
| 2180H<br>-<br>2181H | 8576<br>-<br>8577 | Channel<br>11 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 11 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B power factor in<br>circuit 4     | PF11=Rx      |          | Float     | R                  |
| 2182H<br>-<br>2183H | 8578<br>-<br>8579 | Channel<br>11 Load<br>Nature    | Single Phase: Load<br>nature of circuit 11<br>Three Phase/Single<br>Phase-three wire:<br>Phase B load nature<br>of circuit 4                 | LC11=Rx      |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2184H<br>-<br>2185H | 8580<br>-<br>8581 | Channel 12<br>Current           | Single Phase: Total<br>current in circuit 12<br>Three Phase/Single<br>Phase-three wire:<br>Phase C current in<br>circuit 4                   | l12=Rx       | A        | Float     | R                  |
| 2186H<br>-<br>2187H | 8582<br>-<br>8583 | Channel 12<br>Real Power        | Single Phase: Total<br>power in circuit 12<br>Three Phase/Single<br>Phase-three wire:<br>Phase C power in<br>circuit 4                       | P12=Rx       | kW       | Float     | R                  |
| 2188H<br>-<br>2189H | 8584<br>-<br>8585 | Channel 12<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 12Three<br>Phase/Single Phase-<br>three wire: Phase<br>C reactive power in<br>circuit 4  | Q12=Rx       | kvar     | Float     | R                  |
| 218AH<br>-<br>218BH | 8586<br>-<br>8587 | Channel 12<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 12 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>apparent power in<br>circuit 4 | S12=Rx       | kVA      | Float     | R                  |
| 218CH<br>-<br>218DH | 8588<br>-<br>8589 | Channel<br>12 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 12 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C power factor in<br>circuit 4     | PF12=Rx      |          | Float     | R                  |





| Address (H)          | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|----------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 218EH<br>-<br>218FH  | 8590<br>-<br>8591 | Channel<br>12 Load<br>Nature    | Single Phase: Load<br>nature of circuit 12<br>Three Phase/Single<br>Phase-three wire:<br>Phase C load nature<br>of circuit 4                 | LC12=Rx      |          | Float     | R                  |
| 2190H<br>-<br>2191H  | 8592<br>-<br>8593 | Channel 13<br>Current           | Single Phase: Total<br>current in circuit 13<br>Three Phase/Single<br>Phase-three wire:<br>Phase A current in<br>circuit 5                   | l13=Rx       | A        | Float     | R                  |
| 2192H<br>-<br>-2193H | 8594<br>-<br>8595 | Channel 13<br>Real Power        | Single Phase: Total<br>power in circuit 13<br>Three Phase/Single<br>Phase-three wire:<br>Phase A power in<br>circuit 5                       | P13=Rx       | kW       | Float     | R                  |
| 2194H<br>-<br>2195H  | 8596<br>-<br>8597 | Channel 13<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 13 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A reactive power in<br>circuit 5 | Q13=Rx       | kvar     | Float     | R                  |
| 2196H<br>-<br>2197H  | 8598<br>-<br>8599 | Channel 13<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 13 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>apparent power in<br>circuit 5 | S13=Rx       | kVA      | Float     | R                  |

136



| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2198H<br>-<br>2199H | 8600<br>-<br>8601 | Channel<br>13 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 13 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A power factor in<br>circuit 5     | PF13=Rx      |          | Float     | R                  |
| 219AH<br>-<br>219BH | 8602<br>-<br>8603 | Channel<br>13 Load<br>Nature    | Single Phase: Load<br>nature of circuit 13<br>Three Phase/Single<br>Phase-three wire:<br>Phase A load nature<br>of circuit 5                 | LC13=Rx      |          | Float     | R                  |
| 219CH<br>-<br>219DH | 8604<br>-<br>8605 | Channel 14<br>Current           | Single Phase: Total<br>current in circuit 14<br>Three Phase/Single<br>Phase-three wire:<br>Phase B current in<br>circuit 5                   | l14=Rx       | A        | Float     | R                  |
| 219EH<br>-<br>219FH | 8606<br>-<br>8607 | Channel 14<br>Real Power        | Single Phase: Total<br>power in circuit 14<br>Three Phase/Single<br>Phase-three wire:<br>Phase B power in<br>circuit 5                       | P14=Rx       | kW       | Float     | R                  |
| 21A0H<br>-<br>21A1H | 8608<br>-<br>8609 | Channel 14<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 14 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B reactive power in<br>circuit 5 | Q14=Rx       | kvar     | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21A2H<br>-<br>21A3H | 8610<br>-<br>8611 | Channel 14<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 14 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>apparent power in<br>circuit 5 | S14=Rx       | kVA      | Float     | R                  |
| 21A4H<br>-<br>21A5H | 8612<br>-<br>8613 | Channel<br>14 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 14 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B power factor in<br>circuit 5     | PF14=Rx      |          | Float     | R                  |
| 21A6H<br>-<br>21A7H | 8614<br>-<br>8615 | Channel<br>14 Load<br>Nature    | Single Phase: Load<br>nature of circuit 14<br>Three Phase/Single<br>Phase-three wire:<br>Phase B load nature<br>of circuit 5                 | LC14=Rx      |          | Float     | R                  |
| 21A8H<br>-<br>21A9H | 8616<br>-<br>8617 | Channel 15<br>Current           | Single Phase: Total<br>current in circuit 15<br>Three Phase/Single<br>Phase-three wire:<br>Phase C current in<br>circuit 5                   | 115=Rx       | A        | Float     | R                  |
| 21AAH<br>-<br>21ABH | 8618<br>-<br>8619 | Channel 15<br>Real Power        | Single Phase: Total<br>power in circuit 15<br>Three Phase/Single<br>Phase-three wire:<br>Phase C power in<br>circuit 5                       | P15=Rx       | kW       | Float     | R                  |



| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21ACH<br>-<br>21ADH | 8620<br>-<br>8621 | Channel 15<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 15 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C reactive power in<br>circuit 5 | Q15=Rx       | kvar     | Float     | R                  |
| 21AEH<br>-<br>21AFH | 8622<br>-<br>8623 | Channel 15<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 15 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>apparent power in<br>circuit 5 | S15=Rx       | kVA      | Float     | R                  |
| 21B0H<br>-<br>21B1H | 8624<br>-<br>8625 | Channel<br>15 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 15 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C power factor in<br>circuit 5     | PF15=Rx      |          | Float     | R                  |
| 21B2H<br>-<br>21B3H | 8626<br>-<br>8627 | Channel<br>15 Load<br>Nature    | Single Phase: Load<br>nature of circuit 15<br>Three Phase/Single<br>Phase-three wire:<br>Phase C load nature<br>of circuit 5                 | LC15=Rx      |          | Float     | R                  |
| 21B4H<br>-<br>21B5H | 8628<br>-<br>8629 | Channel 16<br>Current           | Single Phase: Total<br>current in circuit 16<br>Three Phase/Single<br>Phase-three wire:<br>Phase A current in<br>circuit 6                   | l16=Rx       | A        | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21B6H<br>-<br>21B7H | 8630<br>-<br>8631 | Channel 16<br>Real Power        | Single Phase: Total<br>power in circuit 16<br>Three Phase/Single<br>Phase-three wire:<br>Phase A power in<br>circuit 6                       | P16=Rx       | kW       | Float     | R                  |
| 21B8H<br>-<br>21B9H | 8632<br>-<br>8633 | Channel 16<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 16 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A reactive power in<br>circuit 6 | Q16=Rx       | kvar     | Float     | R                  |
| 21BAH<br>-<br>21BBH | 8634<br>-<br>8635 | Channel 16<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 16 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>apparent power in<br>circuit 6 | S16=Rx       | kVA      | Float     | R                  |
| 21BCH<br>-<br>21BDH | 8636<br>-<br>8637 | Channel<br>16 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 16 Three<br>Phase/Single Phase-<br>three wire: Phase<br>A power factor in<br>circuit 6     | PF16=Rx      |          | Float     | R                  |
| 21BEH<br>-<br>21BFH | 8638<br>-<br>8639 | Channel<br>16 Load<br>Nature    | Single Phase: Load<br>nature of circuit<br>16Three Phase/<br>Single Phase-three<br>wire: Phase A load<br>nature of circuit 6                 | LC16=Rx      |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21C0H<br>-<br>21C1H | 8640<br>-<br>8641 | Channel 17<br>Current           | Single Phase: Total<br>current in circuit 17<br>Three Phase/Single<br>Phase-three wire:<br>Phase B current in<br>circuit 6                   | l17=Rx       | A        | Float     | R                  |
| 21C2H<br>-<br>21C3H | 8642<br>-<br>8643 | Channel 17<br>Real Power        | Single Phase: Total<br>power in circuit 17<br>Three Phase/Single<br>Phase-three wire:<br>Phase B power in<br>circuit 6                       | P17=Rx       | kW       | Float     | R                  |
| 21C4H<br>-<br>21C5H | 8644<br>-<br>8645 | Channel 17<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 17 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B reactive power in<br>circuit 6 | Q17=Rx       | kvar     | Float     | R                  |
| 21C6H<br>-<br>21C7H | 8646<br>-<br>8647 | Channel 17<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 17 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>apparent power in<br>circuit 6 | S17=Rx       | kVA      | Float     | R                  |
| 21C8H<br>-<br>21C9H | 8648<br>-<br>8649 | Channel<br>17 Power<br>Factor   | Single Phase: Total<br>power factor in<br>circuit 17 Three<br>Phase/Single Phase-<br>three wire: Phase<br>B power factor in<br>circuit 6     | PF17=Rx      |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                      | Description                                                                                                                                  | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21CAH<br>-<br>21CBH | 8650<br>-<br>8651 | Channel<br>17 Load<br>Nature    | Single Phase: Load<br>nature of circuit 17<br>Three Phase/Single<br>Phase-three wire:<br>Phase B load nature<br>of circuit 6                 | LC17=Rx      |          | Float     | R                  |
| 21CCH<br>-<br>21CDH | 8652<br>-<br>8653 | Channel 18<br>Current           | Single Phase: Total<br>current in circuit 18<br>Three Phase/Single<br>Phase-three wire:<br>Phase C current in<br>circuit 6                   | l18=Rx       | A        | Float     | R                  |
| 21CEH<br>-<br>21CFH | 8654<br>-<br>8655 | Channel 18<br>Real Power        | Single Phase: Total<br>power in circuit 18<br>Three Phase/Single<br>Phase-three wire:<br>Phase C power in<br>circuit 6                       | P18=Rx       | kW       | Float     | R                  |
| 21D0H<br>-<br>21D1H | 8656<br>-<br>8657 | Channel 18<br>Reactive<br>Power | Single Phase: Total<br>reactive power in<br>circuit 18 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C reactive power in<br>circuit 6 | Q18=Rx       | kvar     | Float     | R                  |
| 21D2H<br>-<br>21D3H | 8658<br>-<br>8659 | Channel 18<br>Apparent<br>Power | Single Phase: Total<br>apparent power<br>in circuit 18 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>apparent power in<br>circuit 6 | S18=Rx       | kVA      | Float     | R                  |

142



| Address (H)         | Address<br>(D)    | Parameters                                            | Description                                                                                                                              | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21D4H<br>-<br>21D5H | 8660<br>-<br>8661 | Channel<br>18 Power<br>Factor                         | Single Phase: Total<br>power factor in<br>circuit 18 Three<br>Phase/Single Phase-<br>three wire: Phase<br>C power factor in<br>circuit 6 | PF18=Rx      |          | Float     | R                  |
| 21D6H<br>-<br>21D7H | 8662<br>-<br>8663 | Channel<br>18 Load<br>Nature                          | Single Phase: Load<br>nature of circuit<br>18Three Phase/<br>Single Phase-three<br>wire: Phase C load<br>nature of circuit 6             | LC18=Rx      |          | Float     | R                  |
| 21D8H<br>-<br>21D9H | 8664<br>-<br>8665 | User<br>Channel 1<br>Three Phase<br>Active<br>Power   | Total Active Power<br>for 1st three phase/<br>single phase three<br>wire circuit.                                                        | Ps1=Rx       | kW       | Float     | R                  |
| 21DAH<br>-<br>21DBH | 8666<br>-<br>8667 | User<br>Channel 1<br>Three Phase<br>Reactive<br>Power | Total Reactive<br>Power for 1st three<br>phase/single phase<br>three wire circuit.                                                       | Qs1=Rx       | kvar     | Float     | R                  |
| 21DCH<br>-<br>21DDH | 8668<br>-<br>8669 | User<br>Channel 1<br>Three Phase<br>Apparent<br>Power | Total Apparent<br>Power for 1st three<br>phase/single phase<br>three wire circuit.                                                       | Ss1=Rx       | kVA      | Float     | R                  |
| 21DEH<br>-<br>21DFH | 8670<br>-<br>8671 | User<br>Channel 1<br>Three Phase<br>Power<br>Factor   | Total Power Factor<br>for 1st three phase/<br>single phase three<br>wire circuit                                                         | PFs1=Rx      |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                                            | Description                                                                        | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21E0H<br>-<br>21E1H | 8672<br>-<br>8673 | User<br>Channel<br>1 Three<br>Phase Load<br>Nature    | Total Load Nature<br>for 1st three phase/<br>single phase three<br>wire circuit    | LCs1=Rx      |          | Float     | R                  |
| 21E2H<br>-<br>21E3H | 8674<br>-<br>8675 | User<br>Channel 2<br>Three Phase<br>Active<br>Power   | Total Active Power<br>for 2nd three<br>phase/single phase<br>three wire circuit.   | Ps2=Rx       | kW       | Float     | R                  |
| 21E4H<br>-<br>21E5H | 8676<br>-<br>8677 | User<br>Channel 2<br>Three Phase<br>Reactive<br>Power | Total Reactive<br>Power for 2nd three<br>phase/single phase<br>three wire circuit. | Qs2=Rx       | kvar     | Float     | R                  |
| 21E6H<br>-<br>21E7H | 8678<br>-<br>8679 | User<br>Channel 2<br>Three Phase<br>Apparent<br>Power | Total Apparent<br>Power for 2nd three<br>phase/single phase<br>three wire circuit. | Ss2=Rx       | kVA      | Float     | R                  |
| 21E8H<br>-<br>21E9H | 8680<br>-<br>8681 | User<br>Channel 2<br>Three Phase<br>Power<br>Factor   | Total Power Factor<br>for 2nd three<br>phase/single phase<br>three wire circuit    | PFs2=Rx      |          | Float     | R                  |
| 21EAH<br>-<br>21EBH | 8682<br>-<br>8683 | User<br>Channel<br>2 Three<br>Phase Load<br>Nature    | Total Load Nature<br>for 2nd three<br>phase/single phase<br>three wire circuit     | LCs2=Rx      |          | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                                            | Description                                                                        | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21ECH<br>-<br>21EDH | 8684<br>-<br>8685 | User<br>Channel 3<br>Three Phase<br>Active<br>Power   | Total Active Power<br>for 3rd three phase/<br>single phase three<br>wire circuit.  | Ps3=Rx       | kW       | Float     | R                  |
| 21EEH<br>-<br>21EFH | 8686<br>-<br>8687 | User<br>Channel 3<br>Three Phase<br>Reactive<br>Power | Total Reactive<br>Power for 3rd three<br>phase/single phase<br>three wire circuit. | Qs3=Rx       | kvar     | Float     | R                  |
| 21F0H<br>-<br>21F1H | 8688<br>-<br>8689 | User<br>Channel 3<br>Three Phase<br>Apparent<br>Power | Total Apparent<br>Power for 3rd three<br>phase/single phase<br>three wire circuit. | Ss3=Rx       | kVA      | Float     | R                  |
| 21F2H<br>-<br>21F3H | 8690<br>-<br>8691 | User<br>Channel 3<br>Three Phase<br>Power<br>Factor   | Total Power Factor<br>for 3rd three phase/<br>single phase three<br>wire circuit   | PFs3=Rx      |          | Float     | R                  |
| 21F4H<br>-<br>21F5H | 8692<br>-<br>8693 | User<br>Channel<br>3 Three<br>Phase Load<br>Nature    | Total Load Nature<br>for 3rd three phase/<br>single phase three<br>wire circuit    | LCs3=Rx      |          | Float     | R                  |
| 21F6H<br>-<br>21F7H | 8694<br>-<br>8695 | User<br>Channel 4<br>Three Phase<br>Active<br>Power   | Total Active Power<br>for 4th three phase/<br>single phase three<br>wire circuit.  | Ps4=Rx       | kW       | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                                            | Description                                                                        | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 21F8H<br>-<br>21F9H | 8696<br>-<br>8697 | User<br>Channel 4<br>Three Phase<br>Reactive<br>Power | Total Reactive<br>Power for 4th three<br>phase/single phase<br>three wire circuit. | Qs4=Rx       | kvar     | Float     | R                  |
| 21FAH<br>-<br>21FBH | 8698<br>-<br>8699 | User<br>Channel 4<br>Three Phase<br>Apparent<br>Power | Total Apparent<br>Power for 4th three<br>phase/single phase<br>three wire circuit. | Ss4=Rx       | kVA      | Float     | R                  |
| 21FCH<br>-<br>21FDH | 8700<br>-<br>8701 | User<br>Channel 4<br>Three Phase<br>Power<br>Factor   | Total Power Factor<br>for 4th three phase/<br>single phase three<br>wire circuit   | PFs4=Rx      |          | Float     | R                  |
| 21FEH<br>-<br>21FFH | 8702<br>-<br>8703 | User<br>Channel<br>4 Three<br>Phase Load<br>Nature    | Total Load Nature<br>for 4th three phase/<br>single phase three<br>wire circuit    | LCs4=Rx      |          | Float     | R                  |
| 2200H<br>-<br>2201H | 8704<br>-<br>8705 | User<br>Channel 5<br>Three Phase<br>Active<br>Power   | Total Active Power<br>for 5th three phase/<br>single phase three<br>wire circuit.  | Ps5=Rx       | kW       | Float     | R                  |
| 2202H<br>-<br>2203H | 8706<br>-<br>8707 | User<br>Channel 5<br>Three Phase<br>Reactive<br>Power | Total Reactive<br>Power for 5th three<br>phase/single phase<br>three wire circuit. | Qs5=Rx       | kvar     | Float     | R                  |



| Address (H)         | Address<br>(D)    | Parameters                                            | Description                                                                        | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2204H<br>-<br>2205H | 8708<br>-<br>8709 | User<br>Channel 5<br>Three Phase<br>Apparent<br>Power | Total Apparent<br>Power for 5th three<br>phase/single phase<br>three wire circuit. | Ss5=Rx       | kVA      | Float     | R                  |
| 2206H<br>-<br>2207H | 8710<br>-<br>8711 | User<br>Channel 5<br>Three Phase<br>Power<br>Factor   | Total Power Factor<br>for 5th three phase/<br>single phase three<br>wire circuit   | PFs5=Rx      |          | Float     | R                  |
| 2208H<br>-<br>2209H | 8712<br>-<br>8713 | User<br>Channel<br>5 Three<br>Phase Load<br>Nature    | Total Load Nature<br>for 5th three phase/<br>single phase three<br>wire circuit    | LCs5=Rx      |          | Float     | R                  |
| 220AH<br>-<br>220BH | 8714<br>-<br>8715 | User<br>Channel 6<br>Three Phase<br>Active<br>Power   | Total Active Power<br>for 6th three phase/<br>single phase three<br>wire circuit.  | Ps6=Rx       | kW       | Float     | R                  |
| 220CH<br>-<br>220DH | 8716<br>-<br>8717 | User<br>Channel 6<br>Three Phase<br>Reactive<br>Power | Total Reactive<br>Power for 6th three<br>phase/single phase<br>three wire circuit. | Qs6=Rx       | kvar     | Float     | R                  |
| 220EH<br>-<br>220FH | 8718<br>-<br>8719 | User<br>Channel 6<br>Three Phase<br>Apparent<br>Power | Total Apparent<br>Power for 6th three<br>phase/single phase<br>three wire circuit. | Ss6=Rx       | kVA      | Float     | R                  |





| Address (H)         | Address<br>(D)    | Parameters                                          | Description                                                                      | Relationship | Property | Data Type | Access<br>Property |
|---------------------|-------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|--------------|----------|-----------|--------------------|
| 2210H<br>-<br>2211H | 872<br>-<br>8721  | User<br>Channel 6<br>Three Phase<br>Power<br>Factor | Total Power Factor<br>for 6th three phase/<br>single phase three<br>wire circuit | PFs6=Rx      |          | Float     | R                  |
| 2212H<br>-<br>2213H | 8722<br>-<br>8723 | User<br>Channel<br>6 Three<br>Phase Load<br>Nature  | Total Load Nature<br>for 6th three phase/<br>single phase three<br>wire circuit  | LCs6=Rx      |          | Float     | R                  |

The maximum value range is 9 digits, and one decimal point is displayed

#### **Active energy**

Note: 0x03 Read, 16 (0x10) Write

Real-time Energy - Positive Active Energy

| Address (H)         | Address (D)       | Parameters                            | Description                                               | Relationship      | Property | Data Type | Access<br>Property |
|---------------------|-------------------|---------------------------------------|-----------------------------------------------------------|-------------------|----------|-----------|--------------------|
| 2500H<br>-<br>2501H | 9472<br>-<br>9473 | Phase<br>A inline<br>Import<br>Energy | Sum of all Phase A<br>Consumed Energy<br>for all circuits | EPa_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2502H<br>-<br>2503H | 9474<br>-<br>9475 | Phase<br>B inline<br>Import<br>Energy | Sum of all Phase B<br>Consumed Energy<br>for all circuits | EPb_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2504H<br>-<br>2505H | 9476<br>-<br>9477 | Phase<br>C inline<br>Import<br>Energy | Sum of all Phase C<br>Consumed Energy<br>for all circuits | EPc_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |





| Address (H)         | Address (D)       | Parameters                          | Description                                                                                                                              | Relationship      | Property   | Data Type  | Access<br>Property |
|---------------------|-------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|------------|--------------------|
| 2506H<br>-<br>2507H | 9478<br>-<br>9479 | Total<br>Inline<br>Import<br>Energy | Sum of all<br>Consumed Energy<br>for all circuits                                                                                        | EP_<br>IMP=Rx/10  | kWh        | Dword      | R/W                |
| 18                  | Single Pha        | ise + 6 Three                       | - Phase / Single Three                                                                                                                   | e Real - time Po  | ositive Ac | tive Energ | У                  |
| 2508<br>-<br>2509   | 9480<br>-<br>9481 | Channel<br>1 Import<br>Energy       | Single Phase: Total<br>Import Energy<br>in circuit 1 Three<br>Phase/Single<br>Phase-three wire:<br>Phase A Import<br>Energy in circuit 1 | EP1_<br>IMP=Rx/10 | kWh        | Dword      | R/W                |
| 250A<br>-<br>250B   | 9482<br>-<br>9483 | Channel<br>2 Import<br>Energy       | Single Phase: Total<br>Import Energy<br>in circuit 2 Three<br>Phase/Single<br>Phase-three wire:<br>Phase B Import<br>Energy in circuit 1 | EP2_<br>IMP=Rx/10 | kWh        | Dword      | R/W                |
| 250C<br>-<br>250D   | 9484<br>-<br>9485 | Channel<br>3 Import<br>Energy       | Single Phase: Total<br>Import Energy<br>in circuit 3 Three<br>Phase/Single<br>Phase-three wire:<br>Phase C Import<br>Energy in circuit 1 | EP3_<br>IMP=Rx/10 | kWh        | Dword      | R/W                |
| 250E<br>-<br>250F   | 9486<br>-<br>9487 | Channel<br>4 Import<br>Energy       | Single Phase: Total<br>Import Energy<br>in circuit 4 Three<br>Phase/Single<br>Phase-three wire:<br>Phase A Import<br>Energy in circuit 2 | EP4_<br>IMP=Rx/10 | kWh        | Dword      | R/W                |





| Address (H)       | Address (D)       | Parameters                    | Description                                                                                                                              | Relationship      | Property | Data Type | Access<br>Property |
|-------------------|-------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----------|--------------------|
| 2510<br>-<br>2511 | 9488<br>-<br>9489 | Channel<br>5 Import<br>Energy | Single Phase: Total<br>Import Energy<br>in circuit 5 Three<br>Phase/Single<br>Phase-three wire:<br>Phase B Import<br>Energy in circuit 2 | EP5_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2512<br>-<br>2513 | 9490<br>-<br>9491 | Channel<br>6 Import<br>Energy | Single Phase: Total<br>Import Energy<br>in circuit 6 Three<br>Phase/Single<br>Phase-three wire:<br>Phase C Import<br>Energy in circuit 2 | EP6_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2514<br>-<br>2515 | 9492<br>-<br>9493 | Channel<br>7 Import<br>Energy | Single Phase: Total<br>Import Energy<br>in circuit 7 Three<br>Phase/Single<br>Phase-three wire:<br>Phase A Import<br>Energy in circuit 3 | EP7_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2516<br>-<br>2517 | 9494<br>-<br>9495 | Channel<br>8 Import<br>Energy | Single Phase: Total<br>Import Energy<br>in circuit 8Three<br>Phase/Single<br>Phase-three wire:<br>Phase B Import<br>Energy in circuit 3  | EP8_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |







| Address (H)       | Address (D)       | Parameters                        | Description                                                                                                                               | Relationship       | Property | Data Type | Access<br>Property |
|-------------------|-------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2518<br>-<br>2519 | 9496<br>-<br>9497 | Channel<br>9 Import<br>Energy     | Single Phase: Total<br>Import Energy<br>in circuit 9 Three<br>Phase/Single<br>Phase-three wire:<br>Phase C Import<br>Energy in circuit 3  | EP9_<br>IMP=Rx/10  | kWh      | Dword     | R/W                |
| 251A<br>-<br>251B | 9498<br>-<br>9499 | Channel<br>10<br>Import<br>Energy | Single Phase: Total<br>Import Energy in<br>circuit 10 Three<br>Phase/Single<br>Phase-three wire:<br>Phase A Import<br>Energy in circuit 4 | EP10_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 251C<br>-<br>251D | 9500<br>-<br>9501 | Channel<br>11<br>Import<br>Energy | Single Phase: Total<br>Import Energy in<br>circuit 11 Three<br>Phase/Single<br>Phase-three wire:<br>Phase B Import<br>Energy in circuit 4 | EP11_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 251E<br>-<br>251F | 9502<br>-<br>9503 | Channel<br>12<br>Import<br>Energy | Single Phase: Total<br>Import Energy in<br>circuit 12 Three<br>Phase/Single<br>Phase-three wire:<br>Phase C Import<br>Energy in circuit 4 | EP12_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |





| Address (H)       | Address (D)       | Parameters                        | Description                                                                                                                                    | Relationship       | Property | Data Type | Access<br>Property |
|-------------------|-------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2520<br>-<br>2521 | 9504<br>-<br>9505 | Channel<br>13<br>Import<br>Energy | Single Phase: Total<br>Import Energy in<br>circuit 13 Three<br>Phase/Single<br>Phase-three wire:<br>Phase B Import<br>Energy in circuit 5      | EP13_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2522<br>-<br>2523 | 9506<br>-<br>9507 | Channel<br>14<br>Import<br>Energy | Single Phase: Total<br>Import Energy in<br>circuit 14 Three<br>Phase/Single<br>Phase-three wire:<br>Phase B Import<br>Energy in circuit 5      | EP14_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2514<br>-<br>2525 | 9508<br>-<br>9509 | Channel<br>15<br>Import<br>Energy | Single Phase: Total<br>Import Energy in<br>circuit 15 Three<br>Phase/Single<br>Phase-three wire:<br>Phase C Import<br>Energy in circuit 5      | EP15_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2516<br>-<br>2527 | 9510<br>-<br>9511 | Channel<br>16<br>Import<br>Energy | Single Phase:<br>Total Import<br>Energy in circuit<br>16 Three Phase/<br>Single Phase-<br>three wire: Phase<br>A Import Energy in<br>circuit 6 | EP16_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |





| Address (H)       | Address (D)       | Parameters                            | Description                                                                                                                                    | Relationship       | Property | Data Type | Access<br>Property |
|-------------------|-------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2528<br>-<br>2529 | 9512<br>-<br>9513 | Channel<br>17<br>Import<br>Energy     | Single Phase:<br>Total Import<br>Energy in circuit<br>17 Three Phase/<br>Single Phase-<br>three wire: Phase<br>B Import Energy in<br>circuit 6 | EP17_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 252A<br>-<br>252B | 9514<br>-<br>9515 | Channel<br>18<br>Import<br>Energy     | Single Phase:<br>Total Import<br>Energy in circuit<br>18 Three Phase/<br>Single Phase-<br>three wire: Phase<br>C Import Energy in<br>circuit 6 | EP18_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 252C<br>-<br>252D | 9516<br>-<br>9517 | User<br>Channel<br>1 Import<br>Energy | Total Import<br>Energy for the 1st<br>three phase/single<br>phase three wire<br>circuit                                                        | EPs1_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 252E<br>-<br>252F | 9518<br>-<br>9519 | User<br>Channel<br>2 Import<br>Energy | Total Import<br>Energy for the 2nd<br>three phase/single<br>phase three wire<br>circuit                                                        | EPs2_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2530<br>-<br>2531 | 9520<br>-<br>9521 | User<br>Channel<br>3 Import<br>Energy | Total Import<br>Energy for the 3rd<br>three phase/single<br>phase three wire<br>circuit                                                        | EPs3_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |





| Address (H)       | Address (D)       | Parameters                            | Description                                                                             | Relationship       | Property | Data Type | Access<br>Property |
|-------------------|-------------------|---------------------------------------|-----------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2532<br>-<br>2533 | 9522<br>-<br>9523 | User<br>Channel<br>4 Import<br>Energy | Total Import<br>Energy for the 4th<br>three phase/single<br>phase three wire<br>circuit | EPs4_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2534<br>-<br>2535 | 9524<br>-<br>9525 | User<br>Channel<br>5 Import<br>Energy | Total Import<br>Energy for the 5th<br>three phase/single<br>phase three wire<br>circuit | EPs5_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |
| 2536<br>-<br>2537 | 9526<br>-<br>9527 | User<br>Channel<br>6 Import<br>Energy | Total Import<br>Energy for the 6th<br>three phase/single<br>phase three wire<br>circuit | EPs6_<br>IMP=Rx/10 | kWh      | Dword     | R/W                |

#### **Reactive Energy**

| Address (H)         | Address (D)         | Parameters                                        | Relationship                                                       | Property | Data Type | Access<br>Property |
|---------------------|---------------------|---------------------------------------------------|--------------------------------------------------------------------|----------|-----------|--------------------|
|                     |                     | I                                                 | ncoming Reactive Energy                                            |          |           |                    |
| 2B00H<br>-<br>2B01H | 11008<br>-<br>11009 | Phase<br>A Inline<br>Import<br>Reactive<br>Energy | Sum of all Phase A<br>Consumed Reactive<br>Energy for all circuits | kvarh    | Dword     | R/W                |
| 2B02H<br>-<br>2B03H | 11010<br>-<br>11011 | Phase<br>B Inline<br>Import<br>Reactive<br>Energy | Sum of all Phase B<br>Consumed Reactive<br>Energy for all circuits | kvarh    | Dword     | R/W                |





| Address (H)         | Address (D)         | Parameters                                        | Relationship                                                                                                                                                | Property     | Data Type   | Access<br>Property |
|---------------------|---------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------|
| 2B04H<br>-<br>2B05H | 11012<br>-<br>11013 | Phase<br>C Inline<br>Import<br>Reactive<br>Energy | Sum of all Phase C<br>Consumed Reactive<br>Energy for all circuits                                                                                          | kvarh        | Dword       | R/W                |
| 2B06H<br>-<br>2B07H | 11014<br>-<br>11015 | Total Inline<br>Import<br>Reactive<br>Energy      | Sum of all Consumed<br>Reactive Energy for all<br>circuits                                                                                                  | kvarh        | Dword       | R/W                |
| 1                   | 8 Channel           | Single - Phase                                    | and 6 Three - Phase / Singl                                                                                                                                 | e Three Read | tive Energy | ,                  |
| 2B08H<br>-<br>2B09H | 11016<br>-<br>11017 | Channel<br>1 Import<br>Reactive<br>Energy         | Single Phase: Total<br>Import Reactive Energy<br>in circuit 1 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>Import Reactive Energy<br>in circuit 1 | kvarh        | Dword       | R/W                |
| 2B0AH<br>-<br>2B0BH | 11018<br>-<br>11019 | Channel<br>2 Import<br>Reactive<br>Energy         | Single Phase: Total<br>Import Reactive Energy<br>in circuit 2 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>Import Reactive Energy<br>in circuit 1 | kvarh        | Dword       | R/W                |
| 2B0CH<br>-<br>2B0DH | 11020<br>-<br>11021 | Channel<br>3 Import<br>Reactive<br>Energy         | Single Phase: Total<br>Import Reactive Energy<br>in circuit 3 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>Import Reactive Energy<br>in circuit 1 | kvarh        | Dword       | R/W                |





| Address (H)         | Address (D)         | Parameters                                | Relationship                                                                                                                                                | Property | Data Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------------|
| 280EH<br>-<br>280FH | 11022<br>-<br>11023 | Channel<br>4 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 4 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>Import Reactive Energy<br>in circuit 2 | kvarh    | Dword     | R/W                |
| 2B10H<br>-<br>2B11H | 11024<br>-<br>11025 | Channel<br>5 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 5 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>Import Reactive Energy<br>in circuit 2 | kvarh    | Dword     | R/W                |
| 2B12H<br>-<br>2B13H | 11026<br>-<br>11027 | Channel<br>6 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 6 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>Import Reactive Energy<br>in circuit 2 | kvarh    | Dword     | R/W                |
| 2B14H<br>-<br>2B15H | 11028<br>-<br>11029 | Channel<br>7 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 7 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>Import Reactive Energy<br>in circuit 3 | kvarh    | Dword     | R/W                |







| Address (H)         | Address (D)         | Parameters                                 | Relationship                                                                                                                                                 | Property | Data Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------------|
| 2B16H<br>-<br>2B17H | 11030<br>-<br>11031 | Channel<br>8 Import<br>Reactive<br>Energy  | Single Phase: Total<br>Import Reactive Energy<br>in circuit 8 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>Import Reactive Energy<br>in circuit 3  | kvarh    | Dword     | R/W                |
| 2B18H<br>-<br>2B19H | 11032<br>-<br>11033 | Channel<br>9 Import<br>Reactive<br>Energy  | Single Phase: Total<br>Import Reactive Energy<br>in circuit 9 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>Import Reactive Energy<br>in circuit 3  | kvarh    | Dword     | R/W                |
| 2B1AH<br>-<br>2B1BH | 11034<br>-<br>11035 | Channel<br>10 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 10 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>Import Reactive Energy<br>in circuit 4 | kvarh    | Dword     | R/W                |
| 2B1CH<br>-<br>2B1DH | 11036<br>-<br>11037 | Channel<br>11 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 11 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>Import Reactive Energy<br>in circuit 4 | kvarh    | Dword     | R/W                |





| Address (H)         | Address (D)         | Parameters                                 | Relationship                                                                                                                                                 | Property | Data Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------------|
| 2B1EH<br>-<br>2B1FH | 11038<br>-<br>11039 | Channel<br>12 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 12 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>Import Reactive Energy<br>in circuit 4 | kvarh    | Dword     | R/W                |
| 2B20H<br>-<br>2B21H | 11040<br>-<br>11041 | Channel<br>13 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 13 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>Import Reactive Energy<br>in circuit 5 | kvarh    | Dword     | R/W                |
| 2B22H<br>-<br>2B23H | 11042<br>-<br>11043 | Channel<br>14 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 14 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>Import Reactive Energy<br>in circuit 5 | kvarh    | Dword     | R/W                |
| 2B24H<br>-<br>2B25H | 11044<br>-<br>11045 | Channel<br>15 Import<br>Reactive<br>Energy | Single Phase: Total<br>Import Reactive Energy<br>in circuit 15 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>Import Reactive Energy<br>in circuit 5 | kvarh    | Dword     | R/W                |







| Address (H)         | Address (D)         | Parameters                                        | Relationship                                                                                                                                                 | Property | Data Type | Access<br>Property |
|---------------------|---------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------------|
| 2B26H<br>-<br>2B27H | 11046<br>-<br>11047 | Channel<br>16 Import<br>Reactive<br>Energy        | Single Phase: Total<br>Import Reactive Energy<br>in circuit 16 Three<br>Phase/Single Phase-<br>three wire: Phase A<br>Import Reactive Energy<br>in circuit 6 | kvarh    | Dword     | R/W                |
| 2B28H<br>-<br>2B29H | 11048<br>-<br>11049 | Channel<br>17 Import<br>Reactive<br>Energy        | Single Phase: Total<br>Import Reactive Energy<br>in circuit 17 Three<br>Phase/Single Phase-<br>three wire: Phase B<br>Import Reactive Energy<br>in circuit 6 | kvarh    | Dword     | R/W                |
| 2B2AH<br>-<br>2B2BH | 11050<br>-<br>11051 | Channel<br>18 Import<br>Reactive<br>Energy        | Single Phase: Total<br>Import Reactive Energy<br>in circuit 18 Three<br>Phase/Single Phase-<br>three wire: Phase C<br>Import Reactive Energy<br>in circuit 6 | kvarh    | Dword     | R/W                |
| 2B2CH<br>-<br>2B2DH | 11052<br>-<br>11053 | User<br>Channel<br>1 Import<br>Reactive<br>Energy | Total Import Reactive<br>Energy for the 1st three<br>phase/single phase<br>three wire circuit                                                                | kvarh    | Dword     | R/W                |
| 2B2EH<br>-<br>2B2FH | 11054<br>-<br>11055 | User<br>Channel<br>2 Import<br>Reactive<br>Energy | Total Import Reactive<br>Energy for the 2nd<br>three phase/single<br>phase three wire circuit                                                                | kvarh    | Dword     | R/W                |





| Address (H)         | Address (D)         | Parameters                                        | Relationship                                                                                  | Property | Data Type | Access<br>Property |
|---------------------|---------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|----------|-----------|--------------------|
| 2B30H<br>-<br>2B31H | 11056<br>-<br>11057 | User<br>Channel<br>3 Import<br>Reactive<br>Energy | Total Import Reactive<br>Energy for the 3rd<br>three phase/single<br>phase three wire circuit | kvarh    | Dword     | R/W                |
| 2B32H<br>-<br>2B33H | 11058<br>-<br>11059 | User<br>Channel<br>4 Import<br>Reactive<br>Energy | Total Import Reactive<br>Energy for the 4th<br>three phase/single<br>phase three wire circuit | kvarh    | Dword     | R/W                |
| 2B34H<br>-<br>2B35H | 11060<br>-<br>11061 | User<br>Channel<br>5 Import<br>Reactive<br>Energy | Total Import Reactive<br>Energy for the 5th<br>three phase/single<br>phase three wire circuit | kvarh    | Dword     | R/W                |
| 2B36H<br>-<br>2B37H | 11062<br>-<br>11063 | User<br>Channel<br>6 Import<br>Reactive<br>Energy | Total Import Reactive<br>Energy for the 6th<br>three phase/single<br>phase three wire circuit | kvarh    | Dword     | R/W                |

#### **Apparent Energy**

| Address (H)         | Address (D)              | Parameter                               | Description                                               | Relationship      | Property | Data Type | Access<br>Property |  |  |
|---------------------|--------------------------|-----------------------------------------|-----------------------------------------------------------|-------------------|----------|-----------|--------------------|--|--|
|                     | Incoming Apparent Energy |                                         |                                                           |                   |          |           |                    |  |  |
| 2B38H<br>-<br>2B39H | 11064<br>-<br>11065      | Phase<br>A Inline<br>Apparent<br>Energy | Sum of all Phase A<br>Apparent Energy<br>for all circuits | ESa_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |  |  |





| Address (H)         | Address (D)         | Parameter                               | Description                                                                                                                                       | Relationship      | Property | Data Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----------|--------------------|
| 2B3AH<br>-<br>2B3BH | 11066<br>-<br>11067 | Phase<br>B Inline<br>Apparent<br>Energy | Sum of all Phase B<br>Apparent Energy<br>for all circuits                                                                                         | ESb_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B3CH<br>-<br>2B3DH | 11068<br>-<br>11069 | Phase<br>C Inline<br>Apparent<br>Energy | Sum of all Phase C<br>Apparent Energy<br>for all circuits                                                                                         | ESc_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B3EH<br>-<br>2B3FH | 11070<br>-<br>11071 | Total<br>Inline<br>Apparent<br>Energy   | Sum of all<br>Consumed<br>Apparent Energy<br>for all circuits                                                                                     | ES_<br>IMP=Rx/10  | kVA      | Dword     | R/W                |
| 18                  | Channel             | Single - Phas                           | e and 6 Three - Phase                                                                                                                             | e / Single Three  | Appare   | nt Energy |                    |
| 2B40H<br>-<br>2B41H | 11072<br>-<br>11073 | Channel<br>1<br>Apparent<br>Energy      | Single Phase:<br>Total Apparent<br>Energy in circuit<br>1 Three Phase/<br>Single Phase-<br>three wire: Phase<br>A Apparent<br>Energy in circuit 1 | ES1_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B42H<br>-<br>2B43H | 11074<br>-<br>11075 | Channel<br>2<br>Apparent<br>Energy      | Single Phase:<br>Total Apparent<br>Energy in circuit<br>2 Three Phase/<br>Single Phase-<br>three wire: Phase<br>B Apparent<br>Energy in circuit 1 | ES2_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |





| Address (H)         | Address (D)         | Parameter                          | Description                                                                                                                                       | Relationship      | Property | Data Type | Access<br>Property |
|---------------------|---------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|-----------|--------------------|
| 2B44H<br>-<br>2B45H | 11076<br>-<br>11077 | Channel<br>3<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>1 Three Phase/<br>Single Phase-<br>three wire: Phase<br>C Apparent<br>Energy in circuit 1 | ES3_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B46H<br>-<br>2B47H | 11078<br>-<br>11079 | Channel<br>4<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>4 Three Phase/<br>Single Phase-<br>three wire: Phase<br>A Apparent<br>Energy in circuit 1 | ES4_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B48H<br>-<br>2B49H | 11080<br>-<br>11081 | Channel<br>5<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>5 Three Phase/<br>Single Phase-<br>three wire: Phase<br>B Apparent<br>Energy in circuit 1 | ES5_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B4AH<br>-<br>2B4BH | 11082<br>-<br>11083 | Channel<br>6<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>6 Three Phase/<br>Single Phase-<br>three wire: Phase<br>C Apparent<br>Energy in circuit 1 | ES6_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |



1<u>62</u>



| Address (H)         | Address (D)         | Parameter                           | Description                                                                                                                                        | Relationship       | Property | Data Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2B4CH<br>-<br>2B4DH | 11084<br>-<br>11085 | Channel<br>7<br>Apparent<br>Energy  | Single Phase:<br>Total Apparent<br>Energy in circuit<br>7 Three Phase/<br>Single Phase-<br>three wire: Phase<br>A Apparent<br>Energy in circuit 1  | ES7_<br>IMP=Rx/10  | kVA      | Dword     | R/W                |
| 2B4EH<br>-<br>2B4FH | 11086<br>-<br>11087 | Channel<br>8<br>Apparent<br>Energy  | Single Phase:<br>Total Apparent<br>Energy in circuit<br>8 Three Phase/<br>Single Phase-<br>three wire: Phase<br>B Apparent<br>Energy in circuit 1  | ES8_<br>IMP=Rx/10  | kVA      | Dword     | R/W                |
| 2B50H<br>-<br>2B51H | 11088<br>-<br>11089 | Channel<br>9<br>Apparent<br>Energy  | Single Phase:<br>Total Apparent<br>Energy in circuit<br>9 Three Phase/<br>Single Phase-<br>three wire: Phase<br>C Apparent<br>Energy in circuit 1  | ES9_<br>IMP=Rx/10  | kVA      | Dword     | R/W                |
| 2B52H<br>-<br>2B53H | 10090<br>-<br>11091 | Channel<br>10<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>10 Three Phase/<br>Single Phase-<br>three wire: Phase<br>A Apparent<br>Energy in circuit 1 | ES10_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |





| Address (H)         | Address (D)         | Parameter                           | Description                                                                                                                                        | Relationship       | Property | Data Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2854H<br>-<br>2855H | 11092<br>-<br>11093 | Channel<br>11<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>11 Three Phase/<br>Single Phase-<br>three wire: Phase<br>B Apparent<br>Energy in circuit 1 | ES11_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B56H<br>-<br>2B57H | 11094<br>-<br>11095 | Channel<br>12<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>12 Three Phase/<br>Single Phase-<br>three wire: Phase<br>C Apparent<br>Energy in circuit 1 | ES12_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B58H<br>-<br>2B59H | 11096<br>-<br>11097 | Channel<br>13<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>13 Three Phase/<br>Single Phase-<br>three wire: Phase<br>A Apparent<br>Energy in circuit 1 | ES13_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B5AH<br>-<br>2B5BH | 11098<br>-<br>11099 | Channel<br>14<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>14 Three Phase/<br>Single Phase-<br>three wire: Phase<br>B Apparent<br>Energy in circuit 1 | ES14_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |







| Address (H)         | Address (D)         | Parameter                           | Description                                                                                                                                        | Relationship       | Property | Data Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2B5CH<br>-<br>2B5DH | 11100<br>-<br>11101 | Channel<br>15<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>15 Three Phase/<br>Single Phase-<br>three wire: Phase<br>C Apparent<br>Energy in circuit 1 | ES15_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B5EH<br>-<br>2B5FH | 11102<br>-<br>11103 | Channel<br>16<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>16 Three Phase/<br>Single Phase-<br>three wire: Phase<br>A Apparent<br>Energy in circuit 1 | ES16_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B60H<br>-<br>2B61H | 11104<br>-<br>11105 | Channel<br>17<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>17 Three Phase/<br>Single Phase-<br>three wire: Phase<br>B Apparent<br>Energy in circuit 1 | ES17_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B62H<br>-<br>2B63H | 11106<br>-<br>11107 | Channel<br>18<br>Apparent<br>Energy | Single Phase:<br>Total Apparent<br>Energy in circuit<br>18 Three Phase/<br>Single Phase-<br>three wire: Phase<br>C Apparent<br>Energy in circuit 1 | ES18_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |





| Address (H)         | Address (D)         | Parameter                                  | Description                                                                                | Relationship       | Property | Data Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|--------------------|----------|-----------|--------------------|
| 2B64H<br>-<br>2B65H | 11108<br>-<br>11109 | User<br>Channel<br>1<br>Apparent<br>Energy | Total Apparent<br>Energy for the<br>1st three phase/<br>single phase<br>three wire circuit | ESs1_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B66H<br>-<br>2B67H | 11110<br>-<br>11111 | User<br>Channel<br>2<br>Apparent<br>Energy | Total Apparent<br>Energy for the<br>2nd three phase/<br>single phase<br>three wire circuit | ESs1_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B68H<br>-<br>2B69H | 11112<br>-<br>11113 | User<br>Channel<br>3<br>Apparent<br>Energy | Total Apparent<br>Energy for the<br>3rd three phase/<br>single phase<br>three wire circuit | ESs1_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B6AH<br>-<br>2B6BH | 11114<br>-<br>11115 | User<br>Channel<br>4<br>Apparent<br>Energy | Total Apparent<br>Energy for the<br>4th three phase/<br>single phase<br>three wire circuit | ESs1_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B6CH<br>-<br>2B6DH | 11116<br>-<br>11117 | User<br>Channel<br>5<br>Apparent<br>Energy | Total Apparent<br>Energy for the<br>5th three phase/<br>single phase<br>three wire circuit | ESs1_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |
| 2B6EH<br>-<br>2B6FH | 11118<br>-<br>11119 | User<br>Channel<br>6<br>Apparent<br>Energy | Total Apparent<br>Energy for the<br>6th three phase/<br>single phase<br>three wire circuit | ESs1_<br>IMP=Rx/10 | kVA      | Dword     | R/W                |

#### Demand

| Address (H)         | Address (D)         | Parameters                                                | Description                                             | Relationship             | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------|----------|--------------|--------------------|
|                     |                     |                                                           | Incoming Demand                                         |                          |          |              |                    |
| 2D00H<br>-<br>2D01H | 11520<br>-<br>11521 | Total Inline<br>System<br>Power<br>Demand                 | System Power<br>Demand for all<br>circuits              | Rx=Psum_<br>DMD          | kW       | Float        | R                  |
| 2D02H<br>-<br>2D03H | 11522<br>-<br>11523 | Total Inline<br>System<br>Power<br>Demand<br>Prediction   | System Power<br>Demand Prediction<br>for all circuits   | Rx=Psum_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2D04H<br>-<br>2D05H | 11524<br>-<br>11525 | Total<br>Inline Peak<br>System<br>Power<br>Demand         | Maximum System<br>Power Demand for<br>all circuits      | Rx=Psum_<br>Max_DMD      | kW       | Float        | R                  |
| 2D06H<br>-<br>2D08H | 11526<br>-<br>11527 | Inline Peak<br>System<br>Power<br>Demand<br>Time          | Time stamp for<br>Maximum System<br>Power Demand        | Rx=                      |          |              | R                  |
| 2D09H<br>-<br>2D0AH | 11530<br>-<br>11531 | Total Inline<br>Reactive<br>Power<br>Demand               | Reactive Power<br>Demand for all<br>circuits            | Rx=Qsum_<br>DMD          | kvar     | Float        | R                  |
| 2D0BH<br>-<br>2D0CH | 11532<br>-<br>11533 | Total Inline<br>Reactive<br>Power<br>Demand<br>Prediction | Reactive Power<br>Demand Prediction<br>for all circuits | Rx=Qsum_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                             | Relationship             | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|---------------------------------------------------------|--------------------------|----------|--------------|--------------------|
| 2D0DH<br>-<br>2D0EH | 11534<br>-<br>11535 | Total<br>Inline Peak<br>Reactive<br>Power<br>Demand       | Maximum Reactive<br>Power Demand for<br>all circuits    | Rx=Qsum_<br>Max_DMD      | kvar     | Float        | R                  |
| 2D0FH<br>-<br>2D11H | 11536<br>-<br>11537 | Inline Peak<br>Reactive<br>Power<br>Demand<br>Time        | Time stamp for<br>Maximum Reactive<br>Power Demand      | Rx=                      |          |              | R                  |
| 2D12H<br>-<br>2D13H | 11538<br>-<br>11539 | Total Inline<br>Apparent<br>Power<br>Demand               | Apparent Power<br>Demand for all<br>circuits            | Rx=Ssum_<br>DMD          | kVA      | Float        | R                  |
| 2D14H<br>-<br>2D15H | 11540<br>-<br>11541 | Total Inline<br>Apparent<br>Power<br>Demand<br>Prediction | Apparent Power<br>Demand Prediction<br>for all circuits | Rx=Ssum_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2D16H<br>-<br>2D17H | 11542<br>-<br>11543 | Inline Peak<br>Apparent<br>Power<br>Demand                | Maximum Apparent<br>Power Demand for<br>all circuits    | Rx=Ssum_<br>Max_DMD      | kVA      | Float        | R                  |
| 2D18H<br>-<br>2D1AH | 11544<br>-<br>11546 | Inline Peak<br>Apparent<br>Power<br>Demand<br>Time        | Time stamp for<br>Maximum Apparent<br>Power Demand      | Rx=                      |          |              | R                  |
| 2D1BH<br>-<br>2D1CH | 11547<br>-<br>11548 | Phase<br>A Inline<br>Current<br>Demand                    | Phase A Current<br>Demand for all<br>circuits           | Rx=la_<br>DMD            | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                              | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D1DH<br>-<br>2D1EH | 11549<br>-<br>11550 | Phase<br>A Inline<br>Current<br>Demand<br>Prediction   | Phase A Current<br>Demand Prediction<br>for all circuits | Rx=la_<br>Pred_<br>DMD | A        | Float        | R                  |
| 2D1FH<br>-<br>2D20H | 11551<br>-<br>11552 | Phase A<br>Inline Peak<br>Current<br>Demand            | Maximum Phase A<br>Current Demand for<br>all circuits    | Rx=la_<br>Max_DMD      | A        | Float        | R                  |
| 2D21H<br>-<br>2D23H | 11553<br>-<br>11555 | Inline<br>Phase<br>A Peak<br>Current<br>Demand<br>Time | Time stamp for<br>Maximum Phase A<br>Current Demand      | Rx=                    |          |              | R                  |
| 2D24H<br>-<br>2D25H | 11556<br>-<br>11557 | Phase<br>A Inline<br>Power<br>Demand                   | Phase A Power<br>Demand for all<br>circuits              | Rx=Pa_<br>DMD          | kW       | Float        | R                  |
| 2D26H<br>-<br>2D27H | 11558<br>-<br>11559 | Phase<br>A Inline<br>Power<br>Demand<br>Prediction     | Phase A Power<br>Demand Prediction<br>for all circuits   | Rx=Pa_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2D28H<br>-<br>2D29H | 11560<br>-<br>11561 | Phase A<br>Inline Peak<br>Power<br>Demand              | Maximum Phase A<br>Peak Power Demand<br>for all circuits | Rx=Pa_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                       | Description                                                        | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D2AH<br>-<br>2D2CH | 11562<br>-<br>11564 | Inline<br>Phase<br>A Peak<br>Power<br>Demand<br>Time             | Time stamp for<br>Maximum Phase A<br>Power Demand                  | Rx=                    |          |              | R                  |
| 2D2DH<br>-<br>2D2EH | 11565<br>-<br>11566 | Phase<br>A Inline<br>Reactive<br>Power<br>Demand                 | Phase A Reactive<br>Power Demand for<br>all circuits               | Rx=Qa_<br>DMD          | kvar     | Float        | R                  |
| 2D2FH<br>-<br>2D30H | 11567<br>-<br>11568 | Phase<br>A Inline<br>Reactive<br>Power<br>Demand<br>Prediction   | Phase A Reactive<br>Power Demand<br>Prediction for all<br>circuits | Rx=Qa_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2D31H<br>-<br>2D32H | 11569<br>-<br>11570 | Phase A<br>Peak Inline<br>Reactive<br>Power<br>Demand            | Maximum Phase<br>A Reactive Power<br>Demand for all<br>circuits    | Rx=Qa_<br>Max_DMD      | kvar     | Float        | R                  |
| 2D33H<br>-<br>2D35H | 11571<br>-<br>11573 | Inline<br>Phase<br>A Peak<br>Reactive<br>Power<br>Demand<br>Time | Time stamp for<br>Maximum Phase<br>A Reactive Power<br>Demand      | Rx=                    |          |              | R                  |





| Address (H)          | Address (D)         | Parameters                                                       | Description                                                        | Relationship           | Property | Data<br>Type | Access<br>Property |
|----------------------|---------------------|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D36H<br>-<br>R2D37H | 11574<br>-<br>11575 | Phase<br>A Inline<br>Apparent<br>Power<br>Demand                 | Phase A Apparent<br>Power Demand for<br>all circuits               | Rx=Sa_<br>DMD          | kVA      | Float        | R                  |
| 2D38H<br>-<br>2D39H  | 11576<br>-<br>11577 | Phase<br>A Inline<br>Apparent<br>Power<br>Demand<br>Prediction   | Phase A Apparent<br>Power Demand<br>Prediction for all<br>circuits | Rx=Sa_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2D3AH<br>-<br>2D3BH  | 11578<br>-<br>11579 | Phase A<br>Peak Inline<br>Apparent<br>Power<br>Demand            | Maximum Phase A<br>Apparent Demand<br>for all circuits             | Rx=Sa_<br>Max_DMD      | kVA      | Float        | R                  |
| 2D3CH<br>-<br>2D3EH  | 11580<br>-<br>11582 | Inline<br>Phase<br>A Peak<br>Apparent<br>Power<br>Demand<br>Time | Time Stamp for<br>Maximum Phase<br>A Peak Apparent<br>Demand       | Rx=                    |          |              | R                  |
| 2D3FH<br>-<br>2D40H  | 11583<br>-<br>11584 | Phase<br>B Inline<br>Current<br>Demand                           | Phase B Current<br>Demand for all<br>circuits                      | Rx=lb_<br>DMD          | A        | Float        | R                  |
| 2D41H<br>-<br>2D42H  | 11585<br>-<br>11586 | Phase<br>B Inline<br>Current<br>Demand<br>Prediction             | Phase B Current<br>Demand Prediction<br>for all circuits           | Rx=lb_<br>Pred_<br>DMD | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                           | Description                                                   | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D43H<br>-<br>2D44H | 11587<br>-<br>11588 | Phase B<br>Inline Peak<br>Current<br>Demand          | Maximum Phase B<br>Current Demand                             | Rx=lb_<br>Max_DMD      | A        | Float        | R                  |
| 2D45H<br>-<br>2D47H | 11589<br>-<br>11591 | Inline<br>Phase<br>B Peak<br>Power<br>Demand<br>Time | Time Stamp for<br>Maximum Phase B<br>Current Demand           | Rx=                    |          |              | R                  |
| 2D48H<br>-<br>2D49H | 11592<br>-<br>11593 | Phase<br>B Inline<br>Power<br>Demand                 | Phase B Power<br>Demand for all<br>circuits                   | Rx=Pb_<br>DMD          | kW       | Float        | R                  |
| 2D4AH<br>-<br>2D4BH | 11594<br>-<br>11595 | Phase<br>B Inline<br>Power<br>Demand<br>Prediction   | Phase B Inline Power<br>Demand Prediction<br>for all circuits | Rx=Pb_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2D4CH<br>-<br>2D4DH | 11596<br>-<br>11597 | Phase B<br>Inline Peak<br>Power<br>Demand            | Maximum Phase B<br>Power Demand for<br>all circuits           | Rx=Pb_<br>Max_DMD      | kW       | Float        | R                  |
| 2D4EH<br>-<br>2D50H | 11598<br>-<br>11600 | Inline<br>Phase<br>B Peak<br>Power<br>Demand<br>Time | Time Stamp for<br>Maximum Phase B<br>Power Demand             | Rx=                    |          |              | R                  |







| Address (H)         | Address (D)         | Parameters                                                       | Description                                                        | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D51H<br>-<br>2D52H | 11601<br>-<br>11602 | Phase<br>B Inline<br>Reactive<br>Power<br>Demand                 | Phase B Reactive<br>Power Demand for<br>all circuits               | Rx=Qb_<br>DMD          | kvar     | Float        | R                  |
| 2D53H<br>-<br>2D54H | 11603<br>-<br>11604 | Phase<br>B Inline<br>Reactive<br>Power<br>Demand<br>Prediction   | Phase B Reactive<br>Power Demand<br>Prediction for all<br>circuits | Rx=Qb_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2D55H<br>-<br>2D56H | 11605<br>-<br>11606 | Phase B<br>Inline Peak<br>Reactive<br>Power<br>Demand            | Maximum Phase<br>B Reactive Power<br>Demand for all<br>circuits    | Rx=Qb_<br>Max_DMD      | kvar     | Float        | R                  |
| 2D57H<br>-<br>2D59H | 11607<br>-<br>11609 | Inline<br>Phase<br>B Peak<br>Reactive<br>Power<br>Demand<br>Time | Time Stamp for<br>Maximum Phase<br>B Reactive Power<br>Demand      | Rx=                    |          |              | R                  |
| 2D5AH<br>-<br>2D5BH | 11610<br>-<br>11611 | Phase<br>B Inline<br>Apparent<br>Power<br>Demand                 | Phase B Apparent<br>Power Demand for<br>all circuits               | Rx=Sb_<br>DMD          | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                     | Description                                                        | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D5CH<br>-<br>2D5DH | 11612<br>-<br>11613 | Phase<br>B Inline<br>Apparent<br>Power<br>Demand<br>Prediction | Phase B Apparent<br>Power Demand<br>Prediction for all<br>circuits | Rx=Sb_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2D5EH<br>-<br>2D5FH | 11614<br>-<br>11615 | Phase<br>B Inline<br>Apparent<br>Peak<br>Power<br>Demand       | Maximum Phase<br>B Apparent Power<br>Demand for all<br>circuits    | Rx=Sb_<br>Max_DMD      | kVA      | Float        | R                  |
| 2D60H<br>-<br>2D62H | 11616<br>-<br>11618 | Inline<br>Phase B<br>Apparent<br>Power<br>Demand<br>Time       | Time Stamp for<br>Maximum Phase<br>B Apparent Power<br>Demand      | Rx=                    |          |              | R                  |
| 2D63H<br>-<br>2D64H | 11619<br>-<br>11620 | Phase<br>C Inline<br>Current<br>Demand                         | Phase C Current<br>Demand for all<br>circuits                      | Rx=lc_<br>DMD          | A        | Float        | R                  |
| 2D65H<br>-<br>2D66H | 11621<br>-<br>11622 | Phase<br>C Inline<br>Current<br>Demand<br>Prediction           | Phase C Current<br>Demand Prediction<br>for all circuits           | Rx=lc_<br>Pred_<br>DMD | A        | Float        | R                  |
| 2D67H<br>-<br>2D68H | 11623<br>-<br>11624 | Phase C<br>Inline Peak<br>Current<br>Demand                    | Maximum Phase C<br>Current Demand for<br>all circuits              | Rx=lc_<br>Max_DMD      | A        | Float        | R                  |







| Address (H)         | Address (D)         | Parameters                                             | Description                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D69H<br>-<br>2D6BH | 11625<br>-<br>11627 | Inline<br>Phase<br>C Peak<br>Current<br>Demand<br>Time | Time Stamp for<br>Maximum Phase C<br>Current Demand    | Rx=                    |          |              | R                  |
| 2D6CH<br>-<br>2D6DH | 11628<br>-<br>11629 | Phase<br>C Inline<br>Power<br>Demand                   | Phase C Power<br>Demand for all<br>circuits            | Rx=Pc_<br>DMD          | kW       | Float        | R                  |
| 2D6EH<br>-<br>2D6FH | 11630<br>-<br>11631 | Phase<br>C Inline<br>Power<br>Demand<br>Prediction     | Phase C Power<br>Demand Prediction<br>for all circuits | Rx=Pc_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2D70H<br>-<br>2D71H | 11632<br>-<br>11633 | Phase C<br>Inline Peak<br>Power<br>Demand              | Maximum Phase C<br>Power Demand for<br>all circuits    | Rx=Pc_<br>Max_DMD      | kW       | Float        | R                  |
| 2D72H<br>-<br>2D74H | 11634<br>-<br>11636 | Inline<br>Phase<br>C Peak<br>Power<br>Demand<br>Time   | Time Stamp for<br>Maximum Phase C<br>Power Demand      | Rx=                    |          |              | R                  |
| 2D75H<br>-<br>2D76H | 11637<br>-<br>11638 | Phase<br>C Inline<br>Reactive<br>Power<br>Demand       | Phase C Reactive<br>Power Demand for<br>all circuits   | Rx=Qc_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                       | Description                                                        | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D77H<br>-<br>2D78H | 11639<br>-<br>11640 | Phase<br>C Inline<br>Reactive<br>Power<br>Demand<br>Prediction   | Phase C Reactive<br>Power Demand<br>Prediction for all<br>circuits | Rx=Qc_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2D79H<br>-<br>2D7AH | 11641<br>-<br>11642 | Phase C<br>Inline Peak<br>Reactive<br>Power<br>Demand            | Maximum Phase<br>C Reactive Power<br>Demand for all<br>circuits    | Rx=Qc_<br>Max_DMD      | kvar     | Float        | R                  |
| 2D7BH<br>-<br>2D7DH | 11643<br>-<br>11645 | Inline<br>Phase<br>C Peak<br>Reactive<br>Power<br>Demand<br>Time | Time Stamp for<br>Maximum Phase<br>C Reactive Power<br>Demand      | Rx=                    |          |              | R                  |
| 2D7EH<br>-<br>2D7FH | 11646<br>-<br>11647 | Phase<br>C Inline<br>Apparent<br>Power<br>Demand                 | Phase C Apparent<br>Power Demand for<br>all circuits               | Rx=Sc_<br>DMD          | kVA      | Float        | R                  |
| 2D80H<br>-<br>2D81H | 11648<br>-<br>11649 | Phase<br>C Inline<br>Apparent<br>Power<br>Demand<br>Prediction   | Phase C Apparent<br>Power Demand<br>Prediction for all<br>circuits | Rx=Sc_<br>Pred_<br>DMD | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                       | Description                                                                                                                                                  | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D82H<br>-<br>2D83H | 11650<br>-<br>11651 | Phase C<br>Inline Peak<br>Apparent<br>Power<br>Demand            | Maximum Phase<br>C Apparent Power<br>Demand for all<br>circuits                                                                                              | Rx=Sc_<br>Max_DMD      | kVA      | Float        | R                  |
| 2D84H<br>-<br>2D86H | 11652<br>-<br>11654 | Inline<br>Phase<br>C Peak<br>Apparent<br>Power<br>Demand<br>Time | Time Stamp for<br>Maximum Phase<br>C Apparent Power<br>Demand                                                                                                | Rx=                    |          |              | R                  |
| 2D87H<br>-<br>2D88H | 11655<br>-<br>11656 | Channel<br>1 Current<br>Demand                                   | Single Phase: Current<br>Demand for circuit<br>1Three Phase/Single<br>Phase-three wire:<br>Phase A Current<br>Demand for circuit 1                           | Rx=I1_<br>DMD          | A        | Float        | R                  |
| 2D89H<br>-<br>2D8AH | 11657<br>-<br>11658 | Channel<br>1 Current<br>Demand<br>Prediction                     | Single Phase: Current<br>Demand Prediction<br>for circuit 1Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Current Demand<br>Prediction for circuit 1 | Rx=l1_<br>Pred_<br>DMD | A        | Float        | R                  |
| 2D8BH<br>-<br>2D8CH | 11659<br>-<br>11660 | Channel<br>1 Peak<br>Current<br>Demand                           | Single Phase:<br>Maximum Current<br>Demand for circuit<br>1Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Current Demand for<br>circuit 1     | Rx=l1_<br>Max_DMD      | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D8DH<br>-<br>2D8FH | 11661<br>-<br>11663 | Channel<br>1 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 1Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Current<br>Demand for circuit 1 | Rx=                    |          |              | R                  |
| 2D90H<br>-<br>2D91H | 11664<br>-<br>11665 | Channel<br>1 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>1Three Phase/<br>Single Phase-three<br>wire: Phase A Power<br>Demand for circuit 1                                                 | Rx=P1_<br>DMD          | kW       | Float        | R                  |
| 2D92H<br>-<br>2D93H | 11666<br>-<br>11667 | Channel<br>1 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 1Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Power Demand<br>Prediction for circuit 1                        | Rx=P1_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2D94H<br>-<br>2D95H | 11668<br>-<br>11669 | Channel<br>1 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>1Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Power Demand for<br>circuit 1                            | Rx=P1_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                           | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2D96H<br>-<br>2D98H | 11670<br>-<br>11672 | Channel<br>1 Peak<br>Power<br>Demand<br>Time           | Single Phase: Time<br>Stamp for Maximum<br>Power Demand of<br>circuit 1Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase A<br>Power Demand for<br>circuit 1 | Rx=                    |          |              | R                  |
| 2D99H<br>-<br>2D9AH | 11673<br>-<br>11674 | Channel 1<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand of circuit<br>1Three Phase/Single<br>Phase-three wire:<br>Phase A Reactive<br>Power Demand for<br>circuit 1                                 | Rx=Q1_<br>DMD          | kvar     | Float        | R                  |
| 2D9BH<br>-<br>2D9CH | 11675<br>-<br>11676 | Channel 1<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 1Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Reactive Power<br>Demand Prediction<br>for circuit 1      | Rx=Q1_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                        | Relationship      | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|--------------------|
| 2D9DH<br>-<br>2D9EH | 11677<br>-<br>11678 | Channel<br>1 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 1Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase A Reactive<br>Power Demand for<br>circuit 1                         | Rx=Q1_<br>Max_DMD | kvar     | Float        | R                  |
| 2D9FH<br>-<br>2DA1H | 11679<br>-<br>11681 | Channel<br>1 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>1Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Phase A Reactive<br>Power Demand for<br>circuit 1 |                   |          |              | R                  |
| 2DA2H<br>-<br>2DA3H | 11682<br>-<br>11683 | Channel 1<br>Apparent<br>Power<br>Demand                 | Single Phase:<br>Apparent Power<br>Demand for circuit<br>1Three Phase/Single<br>Phase-three wire:<br>Phase A Apparent<br>Power Demand for<br>circuit 1                                             | Rx=S1_<br>DMD     | kVA      | Float        | R                  |







| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                               | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DA4H<br>-<br>2DA5H | 11684<br>-<br>11685 | Channel 1<br>Apparent<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 1Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Apparent Power<br>Demand Prediction<br>for circuit 1                          | Rx=S1_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2DA6H<br>-<br>2DA7H | 11686<br>-<br>11687 | Channel<br>1 Peak<br>Apparent<br>Power<br>Demand         | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 1Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase A Apparent<br>Power Demand for<br>circuit 1                                | Rx=S1_<br>Max_DMD      | kVA      | Float        | R                  |
| 2DA8H<br>-<br>2DAAH | 11688<br>-<br>11690 | Channel<br>1 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand in circuit<br>1Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>A Apparent Power<br>Demand for circuit 1 | Rx=                    |          |              | R                  |
| 2DABH<br>-<br>2DACH | 11691<br>-<br>11692 | Channel<br>2 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>2Three Phase/Single<br>Phase-three wire:<br>Phase B Current<br>Demand for circuit 2                                                                        | Rx=I2_<br>DMD          | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DADH<br>-<br>2DAEH | 11693<br>-<br>11694 | Channel<br>2 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 2Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Current Demand<br>Prediction for circuit 2                               | Rx=l2_<br>Pred_<br>DMD | А        | Float        | R                  |
| 2DAFH<br>-<br>2DB0H | 11695<br>-<br>11696 | Channel<br>2 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>2Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Current Demand for<br>circuit 2                                   | Rx=l2_<br>Max_DMD      | A        | Float        | R                  |
| 2DB1H<br>-<br>2DB3H | 11697<br>-<br>11699 | Channel<br>2 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 2Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase B<br>Current Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2DB4H<br>-<br>2DB5H | 11700<br>-<br>11701 | Channel<br>2 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>2Three Phase/<br>Single Phase-three<br>wire: Phase B Power<br>Demand for circuit 2                                                            | Rx=P2_<br>DMD          | kW       | Float        | R                  |







| Address (H)         | Address (D)         | Parameters                                   | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DB6H<br>-<br>2DB7H | 11702<br>-<br>11703 | Channel<br>2 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 2Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Power Demand<br>Prediction for circuit 2                               | Rx=P2_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2DB8H<br>-<br>2DB9H | 11704<br>-<br>11705 | Channel<br>2 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>2Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Power Demand for<br>circuit 2                                   | Rx=P2_<br>Max_DMD      | kW       | Float        | R                  |
| 2DBAH<br>-<br>2DBCH | 11706<br>-<br>11708 | Channel<br>2 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 2Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase B<br>Power Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2DBDH<br>-<br>2DBEH | 11709<br>-<br>11710 | Channel 2<br>Reactive<br>Power<br>Demand     | Single Phase:<br>Reactive Power<br>Demand for circuit 2<br>Three Phase/Single<br>Phase-three wire:<br>Phase B Reactive<br>Power Demand for<br>circuit 2                                | Rx=Q2_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DBFH<br>-<br>2DC0H | 11711<br>-<br>11712 | Channel 2<br>Reactive<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 2Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Reactive Power<br>Demand Prediction<br>for circuit 2                           | Rx=Q2_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2DC1H<br>-<br>2DC2H | 11713<br>-<br>11714 | Channel<br>2 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 2Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase B Reactive<br>Power Demand for<br>circuit 2                                 | Rx=Q2_<br>Max_DMD      | kvar     | Float        | R                  |
| 2DC3H<br>-<br>2DC5H | 11715<br>-<br>11717 | Channel<br>2 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>2Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>B Reactive Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                      | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DC6H<br>-<br>2DC7H | 11718<br>-<br>11719 | Channel 2<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>2Three Phase/Single<br>Phase-three wire:<br>Phase B Apparent<br>Power Demand for<br>circuit 2                           | Rx=S2_<br>DMD          | kVA      | Float        | R                  |
| 2DC8H<br>-<br>2DC9H | 11720<br>-<br>11721 | Channel 2<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 2Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Apparent Power<br>Demand Prediction<br>for circuit 2 | Rx=S2_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2DCAH<br>-<br>2DCBH | 11722<br>-<br>11723 | Channel<br>2 Peak<br>Apparent<br>Power<br>Demand       | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 2Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase B Apparent<br>Power Demand for<br>circuit 2       | Rx=S2_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DCCH<br>-<br>2DCEH | 11724<br>-<br>11726 | Channel<br>2 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>2Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>B Apparent Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |
| 2DCFH<br>-<br>2DD0H | 11727<br>-<br>11728 | Channel<br>3 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>3Three Phase/Single<br>Phase-three wire:<br>Phase C Current<br>Demand for circuit 3                                                                         | Rx=I3_<br>DMD          | A        | Float        | R                  |
| 2DD1H<br>-<br>2DD2H | 11729<br>-<br>11730 | Channel<br>3 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 3Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Current Demand<br>Prediction for circuit 3                                               | Rx=l3_<br>Pred_<br>DMD | A        | Float        | R                  |
| 2DD3H<br>-<br>2DD4H | 11731<br>-<br>11732 | Channel<br>3 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>3Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Current Demand for<br>circuit 3                                                   | Rx=I3_<br>Max_DMD      | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DD5H<br>-<br>2DD7H | 11733<br>-<br>11735 | Channel<br>3 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 3Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase C<br>Current Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2DD8H<br>-<br>2DD9H | 11736<br>-<br>11737 | Channel<br>3 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>3Three Phase/<br>Single Phase-three<br>wire: Phase C Power<br>Demand for circuit 3                                                            | Rx=P3_<br>DMD          | kW       | Float        | R                  |
| 2DDAH<br>-<br>2DDBH | 11738<br>-<br>11739 | Channel<br>3 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 3Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Power Demand<br>Prediction for circuit<br>3                                | Rx=P3_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2DDCH<br>-<br>2DDDH | 11740<br>-<br>11741 | Channel<br>3 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>3Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Power Demand for<br>circuit 3                                       | Rx=P3_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DDEH<br>-<br>2DE0H | 11742<br>-<br>11744 | Channel<br>3 Peak<br>Power<br>Demand<br>Time           | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 3Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase C<br>Power Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2DE1H<br>-<br>2DE2H | 11745<br>-<br>11746 | Channel 3<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>3Three Phase/Single<br>Phase-three wire:<br>Phase C Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q3_<br>DMD          | kvar     | Float        | R                  |
| 2DE3H<br>-<br>2DE4H | 11747<br>-<br>11748 | Channel 3<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 3Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Reactive Power<br>Demand Prediction<br>for circuit 3       | Rx=Q3_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship      | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|--------------------|
| 2DE5H<br>-<br>2DE6H | 11749<br>-<br>11750 | Channel<br>3 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 3Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase C Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q3_<br>Max_DMD | kvar     | Float        | R                  |
| 2DE7H<br>-<br>2DE9H | 11751<br>-<br>11753 | Channel<br>3 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>3Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>C Reactive Power<br>Demand for circuit 3 | Rx=               |          |              | R                  |
| 2DEAH<br>-<br>2DEBH | 11754<br>-<br>11755 | Channel 3<br>Apparent<br>Power<br>Demand                 | Single Phase:<br>Apparent Power<br>Demand for circuit<br>3Three Phase/Single<br>Phase-three wire:<br>Phase C Apparent<br>Power Demand for<br>circuit 3                                                     | Rx=S3_<br>DMD     | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DECH<br>-<br>2DEDH | 11756<br>-<br>11757 | Channel 3<br>Apparent<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 3Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Apparent Power<br>Demand Prediction<br>for circuit 3                           | Rx=S3_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2DEEH<br>-<br>2DEFH | 11758<br>-<br>11759 | Channel<br>3 Peak<br>Apparent<br>Power<br>Demand         | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 3Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase C Apparent<br>Power Demand for<br>circuit 3                                 | Rx=S3_<br>Max_DMD      | kVA      | Float        | R                  |
| 2DF0H<br>-<br>2DF2H | 11760<br>-<br>11762 | Channel<br>3 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>3Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>C Apparent Power<br>Demand for circuit 3 | Rx=                    |          |              | R                  |
| 2DF3H<br>-<br>2DF4H | 11763<br>-<br>11764 | Channel<br>4 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>4Three Phase/Single<br>Phase-three wire:<br>Phase A Current<br>Demand for circuit 2                                                                         | Rx=l4_<br>DMD          | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DF5H<br>-<br>2DF6H | 11765<br>-<br>11766 | Channel<br>4 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 4Three<br>Phase/Single Phase-<br>three wire: Phase<br>Current Demand<br>Prediction for circuit 2                                 | Rx=I4_<br>Pred_<br>DMD | А        | Float        | R                  |
| 2DF7H<br>-<br>2DF8H | 11767<br>-<br>11768 | Channel<br>4 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>4Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Current Demand for<br>circuit 2                                   | Rx=l4_<br>Max_DMD      | A        | Float        | R                  |
| 2DF9H<br>-<br>2DFBH | 11769<br>-<br>11771 | Channel<br>4 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 4Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase A<br>Current Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2DFCH<br>-<br>2DFDH | 11772<br>-<br>11773 | Channel<br>4 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>4Three Phase/<br>Single Phase-three<br>wire: Phase A Power<br>Demand for circuit 2                                                            | Rx=P4_<br>DMD          | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                   | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2DFEH<br>-<br>2DFFH | 11774<br>-<br>11775 | Channel<br>4 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 4Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Power Demand<br>Prediction for circuit 2                               | Rx=P4_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2E00H<br>-<br>2E01H | 11776<br>-<br>11777 | Channel<br>4 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>4Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Power Demand for<br>circuit 2                                   | Rx=P4_<br>Max_DMD      | kW       | Float        | R                  |
| 2E02H<br>-<br>2E04H | 11778<br>-<br>11780 | Channel<br>4 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 4Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase A<br>Power Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2E05H<br>-<br>2E06H | 11781<br>-<br>11782 | Channel 4<br>Reactive<br>Power<br>Demand     | Single Phase:<br>Reactive Power<br>Demand for circuit<br>4Three Phase/Single<br>Phase-three wire:<br>Phase A Reactive<br>Power Demand for<br>circuit 2                                 | Rx=Q4_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E07H<br>-<br>2E08H | 11783<br>-<br>11784 | Channel 4<br>Reactive<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 4Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Reactive Power<br>Demand Prediction<br>for circuit 2                           | Rx=Q4_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2E09H<br>-<br>2E0AH | 11785<br>-<br>11786 | Channel<br>4 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 4Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase A Reactive<br>Power Demand for<br>circuit 2                                 | Rx=Q4_<br>Max_DMD      | kvar     | Float        | R                  |
| 2E0BH<br>-<br>2E0DH | 11787<br>-<br>11789 | Channel<br>4 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>4Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>A Reactive Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                      | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E0EH<br>-<br>2E0FH | 11790<br>-<br>11791 | Channel 4<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>4Three Phase/Single<br>Phase-three wire:<br>Phase A Apparent<br>Power Demand for<br>circuit 2                           | Rx=S4_<br>DMD          | kVA      | Float        | R                  |
| 2E10H<br>-<br>2E11H | 11792<br>-<br>11793 | Channel 4<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 4Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Apparent Power<br>Demand Prediction<br>for circuit 2 | Rx=S4_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2E12H<br>-<br>2E13H | 11794<br>-<br>11795 | Channel<br>4 Peak<br>Apparent<br>Power<br>Demand       | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 4Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase A Apparent<br>Power Demand for<br>circuit 2       | Rx=S4_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E14H<br>-<br>2E16H | 11796<br>-<br>11798 | Channel<br>4 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>4Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>A Apparent Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |
| 2E17H<br>-<br>2E18H | 11799<br>-<br>11800 | Channel<br>5 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>5Three Phase/Single<br>Phase-three wire:<br>Phase B Current<br>Demand for circuit 2                                                                         | Rx=I5_<br>DMD          | A        | Float        | R                  |
| 2E19H<br>-<br>2E1AH | 11801<br>-<br>11802 | Channel<br>5 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 5Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Current Demand<br>Prediction for circuit<br>2                                            | Rx=I5_<br>Pred_<br>DMD | A        | Float        | R                  |
| 2E1BH<br>-<br>2E1CH | 11803<br>-<br>11804 | Channel<br>5 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>5Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Current Demand for<br>circuit 2                                                   | Rx=l5_<br>Max_DMD      | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E1DH<br>-<br>2E1FH | 11805<br>-<br>11807 | Channel<br>5 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 5Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase B<br>Current Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2E20H<br>-<br>2E21H | 11808<br>-<br>11809 | Channel<br>5 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>5Three Phase/<br>Single Phase-three<br>wire: Phase B Power<br>Demand for circuit 2                                                            | Rx=P5_<br>DMD          | kW       | Float        | R                  |
| 2E22H<br>-<br>2E23H | 11810<br>-<br>11811 | Channel<br>5 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 5Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Power Demand<br>Prediction for circuit 2                                   | Rx=P5_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2E24H<br>-<br>2E25H | 11812<br>-<br>11813 | Channel<br>5 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>5Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Power Demand for<br>circuit 2                                       | Rx=P5_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E26H<br>-<br>2E28H | 11814<br>-<br>11816 | Channel<br>5 Peak<br>Power<br>Demand<br>Time           | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 5Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase B<br>Power Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2E29H<br>-<br>2E2AH | 11817<br>-<br>11818 | Channel 5<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>5Three Phase/Single<br>Phase-three wire:<br>Phase B Reactive<br>Power Demand for<br>circuit 2                                 | Rx=Q5_<br>DMD          | kvar     | Float        | R                  |
| 2E2BH<br>-<br>2E2CH | 11819<br>-<br>11820 | Channel 5<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 5Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Reactive Power<br>Demand Prediction<br>for circuit 2       | Rx=Q5_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship      | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|--------------------|
| 2E2DH<br>-<br>2E2EH | 11821<br>-<br>11822 | Channel<br>5 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 5Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase B reactive<br>Power Demand for<br>circuit 2                                 | Rx=Q5_<br>Max_DMD | kvar     | Float        | R                  |
| 2E2FH<br>-<br>2E31H | 11823<br>-<br>11825 | Channel<br>5 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>5Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>B Reactive Power<br>Demand for circuit 2 | Rx=               |          |              | R                  |
| 2E32H<br>-<br>2E33H | 11826<br>-<br>11827 | Channel 5<br>Apparent<br>Power<br>Demand                 | Single Phase:<br>Apparent Power<br>Demand for circuit<br>5Three Phase/Single<br>Phase-three wire:<br>Phase B Apparent<br>Power Demand for<br>circuit 2                                                     | Rx=S5_<br>DMD     | kVA      | Float        | R                  |







| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E34H<br>-<br>2E35H | 11828<br>-<br>11829 | Channel 5<br>Apparent<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 5Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Apparent Power<br>Demand Prediction<br>for circuit 2                           | Rx=S5_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2E36H<br>-<br>2E37H | 11830<br>-<br>11831 | Channel<br>5 Peak<br>Apparent<br>Power<br>Demand         | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 5Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase B Apparent<br>Power Demand for<br>circuit 2                                 | Rx=S5_<br>Max_DMD      | kVA      | Float        | R                  |
| 2E38H<br>-<br>2E3AH | 11832<br>-<br>11834 | Channel<br>5 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>5Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>B Apparent Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |
| 2E3BH<br>-<br>2E3CH | 11835<br>-<br>11836 | Channel<br>6 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>6Three Phase/Single<br>Phase-three wire:<br>Phase C Current<br>Demand for circuit 2                                                                         | Rx=I6_<br>DMD          | A        | Float        | R                  |



| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E3DH<br>-<br>2E3EH | 11837<br>-<br>11838 | Channel<br>6 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 6Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Current Demand<br>Prediction for circuit 2                               | Rx=l6_<br>Pred_<br>DMD | A        | Float        | R                  |
| 2E3FH<br>-<br>2E40H | 11839<br>-<br>11840 | Channel<br>6 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>6Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Current Demand for<br>circuit 2                                   | Rx=l6_<br>Max_DMD      | А        | Float        | R                  |
| 2E41H<br>-<br>2E43H | 11841<br>-<br>11843 | Channel<br>6 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 6Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase C<br>Current Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2E44H<br>-<br>2E45H | 11844<br>-<br>11845 | Channel<br>6 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>6Three Phase/<br>Single Phase-three<br>wire: Phase C Power<br>Demand for circuit 2                                                            | Rx=P6_<br>DMD          | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                   | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E46H<br>-<br>2E47H | 11846<br>-<br>11847 | Channel<br>6 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 6Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Power Demand<br>Prediction for circuit 2                               | Rx=P6_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2E48H<br>-<br>2E49H | 11848<br>-<br>11849 | Channel<br>6 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>6Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Power Demand for<br>circuit 2                                   | Rx=P6_<br>Max_DMD      | kW       | Float        | R                  |
| 2E4AH<br>-<br>2E4CH | 11850<br>-<br>11852 | Channel<br>6 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 6Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase C<br>Power Demand for<br>circuit 2 | Rx=                    |          |              | R                  |
| 2E4DH<br>-<br>2E4EH | 11853<br>-<br>11854 | Channel 6<br>Reactive<br>Power<br>Demand     | Single Phase:<br>Reactive Power<br>Demand for circuit<br>6Three Phase/Single<br>Phase-three wire:<br>Phase C Reactive<br>Power Demand for<br>circuit 2                                 | Rx=Q6_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E4FH<br>-<br>2E50H | 11855<br>-<br>11856 | Channel 6<br>Reactive<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 6Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Reactive Power<br>Demand Prediction<br>for circuit 2                           | Rx=Q6_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2E51H<br>-<br>2E52H | 11857<br>-<br>11858 | Channel<br>6 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 6Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase C Reactive<br>Power Demand for<br>circuit 2                                 | Rx=Q6_<br>Max_DMD      | kvar     | Float        | R                  |
| 2E53H<br>-<br>2E55H | 11859<br>-<br>11861 | Channel<br>6 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>6Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>C Reactive Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                      | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E56H<br>-<br>2E57H | 11862<br>-<br>11863 | Channel 6<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>6Three Phase/Single<br>Phase-three wire:<br>Phase C Apparent<br>Power Demand for<br>circuit 2                           | Rx=S6_<br>DMD          | kVA      | Float        | R                  |
| 2E58H<br>-<br>2E59H | 11864<br>-<br>11865 | Channel 6<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 6Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Apparent Power<br>Demand Prediction<br>for circuit 2 | Rx=S6_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2Е5АН<br>-<br>2Е5ВН | 11866<br>-<br>11867 | Channel<br>6 Peak<br>Apparent<br>Power<br>Demand       | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 6Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase C Apparent<br>Power Demand for<br>circuit 2       | Rx=S6_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E5CH<br>-<br>2E5EH | 11868<br>-<br>11870 | Channel<br>6 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>6Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>C Apparent Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |
| 2E5FH<br>-<br>2E60H | 11871<br>-<br>11872 | Channel<br>7 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>7Three Phase/Single<br>Phase-three wire:<br>Phase A Current<br>Demand for circuit 3                                                                         | Rx=I7_<br>DMD          | A        | Float        | R                  |
| 2E61H<br>-<br>2E62H | 11873<br>-<br>11874 | Channel<br>7 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 7Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Current Demand<br>Prediction for circuit 3                                               | Rx=I7_<br>Pred_<br>DMD | A        | Float        | R                  |
| 2E63H<br>-<br>2E64H | 11875<br>-<br>11876 | Channel<br>7 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>7Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Current Demand for<br>circuit 3                                                   | Rx=I7_<br>Max_DMD      | А        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E65H<br>-<br>2E67H | 11877<br>-<br>11879 | Channel<br>7 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 7Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase A<br>Current Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2E68H<br>-<br>2E69H | 11880<br>-<br>11881 | Channel<br>7 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>7Three Phase/<br>Single Phase-three<br>wire: Phase A Power<br>Demand for circuit 3                                                            | Rx=P7_<br>DMD          | kW       | Float        | R                  |
| 2E6AH<br>-<br>2E6BH | 11882<br>-<br>11883 | Channel<br>7 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 7Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Power Demand<br>Prediction for circuit 3                                   | Rx=P7_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2E6CH<br>-<br>2E6DH | 11884<br>-<br>11885 | Channel<br>7 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>7Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Power Demand for<br>circuit 3                                       | Rx=P7_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2Е6ЕН<br>-<br>2Е7ОН | 11886<br>-<br>11888 | Channel<br>7 Peak<br>Power<br>Demand<br>Time           | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 7Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase A<br>Power Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2E71H<br>-<br>2E72H | 11889<br>-<br>11890 | Channel 7<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>7Three Phase/Single<br>Phase-three wire:<br>Phase A Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q7_<br>DMD          | kvar     | Float        | R                  |
| 2E73H<br>-<br>2E74H | 11891<br>-<br>11892 | Channel 7<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 7Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Reactive Power<br>Demand Prediction<br>for circuit 3       | Rx=Q7_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship      | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|--------------------|
| 2Е75Н<br>-<br>2Е76Н | 11893<br>-<br>11894 | Channel<br>7 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 7Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase A Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q7_<br>Max_DMD | kvar     | Float        | R                  |
| 2Е77Н<br>-<br>2Е79Н | 11895<br>-<br>11897 | Channel<br>7 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>7Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>A Reactive Power<br>Demand for circuit 3 | Rx=               |          |              | R                  |
| 2E7AH<br>-<br>2E7BH | 11898<br>-<br>11899 | Channel 7<br>Apparent<br>Power<br>Demand                 | Single Phase:<br>Apparent Power<br>Demand for circuit<br>7Three Phase/Single<br>Phase-three wire:<br>Phase A Apparent<br>Power Demand for<br>circuit 3                                                     | Rx=S7_<br>DMD     | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E7CH<br>-<br>2E7DH | 11900<br>-<br>11901 | Channel 7<br>Apparent<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 7Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Apparent Power<br>Demand Prediction<br>for circuit 3                           | Rx=S7_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2E7EH<br>-<br>2E7FH | 11902<br>-<br>11903 | Channel<br>7 Peak<br>Apparent<br>Power<br>Demand         | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 7Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase A Apparent<br>Power Demand for<br>circuit 3                                 | Rx=S7_<br>Max_DMD      | kVA      | Float        | R                  |
| 2E80H<br>-<br>2E82H | 11904<br>-<br>11906 | Channel<br>7 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>7Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>A Apparent Power<br>Demand for circuit 3 | Rx=                    |          |              | R                  |
| 2E83H<br>-<br>2E84H | 11907<br>-<br>11908 | Channel<br>8 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>8Three Phase/Single<br>Phase-three wire:<br>Phase B Current<br>Demand for circuit 3                                                                         | Rx=I8_<br>DMD          | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E85H<br>-<br>2E86H | 11909<br>-<br>11910 | Channel<br>8 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 8Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Current Demand<br>Prediction for circuit 3                               | Rx=l8_<br>Pred_<br>DMD | А        | Float        | R                  |
| 2E87H<br>-<br>2E88H | 11911<br>-<br>11912 | Channel<br>8 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>8Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Current Demand for<br>circuit 3                                   | Rx=l8_<br>Max_DMD      | А        | Float        | R                  |
| 2Е89Н<br>-<br>2Е8ВН | 11913<br>-<br>11915 | Channel<br>8 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 8Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase B<br>Current Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2E8CH<br>-<br>2E8DH | 11916<br>-<br>11917 | Channel<br>8 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>8Three Phase/<br>Single Phase-three<br>wire: Phase B Power<br>Demand for circuit 3                                                            | Rx=P8_<br>DMD          | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                   | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E8EH<br>-<br>2E8FH | 11918<br>-<br>11919 | Channel<br>8 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 8Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Power Demand<br>Prediction for circuit 3                               | Rx=P8_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2E90H<br>-<br>2E91H | 11920<br>-<br>11921 | Channel<br>8 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>8Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Power Demand for<br>circuit 3                                   | Rx=P8_<br>Max_DMD      | kW       | Float        | R                  |
| 2E92H<br>-<br>2E94H | 11922<br>-<br>11924 | Channel<br>8 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 8Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase B<br>Power Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2E95H<br>-<br>2E96H | 11925<br>-<br>11926 | Channel 8<br>Reactive<br>Power<br>Demand     | Single Phase:<br>Reactive Power<br>Demand for circuit<br>8Three Phase/Single<br>Phase-three wire:<br>Phase B Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q8_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E97H<br>-<br>2E98H | 11927<br>-<br>11928 | Channel 8<br>Reactive<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 8Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Reactive Power<br>Demand Prediction<br>for circuit 3                           | Rx=Q8_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2Е99Н<br>-<br>2Е9АН | 11929<br>-<br>11930 | Channel<br>8 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 8Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase B Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q8_<br>Max_DMD      | kvar     | Float        | R                  |
| 2E9BH<br>-<br>2E9DH | 11931<br>-<br>11933 | Channel<br>8 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>8Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>B Reactive Power<br>Demand for circuit 3 | Rx=                    |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                      | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2E9EH<br>-<br>2E9FH | 11934<br>-<br>11935 | Channel 8<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>8Three Phase/Single<br>Phase-three wire:<br>Phase B Apparent<br>Power Demand for<br>circuit 3                           | Rx=S8_<br>Max_DMD      | kVA      | Float        | R                  |
| 2EA0H<br>-<br>2EA1H | 11936<br>-<br>11937 | Channel 8<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 8Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Apparent Power<br>Demand Prediction<br>for circuit 3 | Rx=S8_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2EA2H<br>-<br>2EA3H | 11938<br>-<br>11939 | Channel<br>8 Peak<br>Apparent<br>Power<br>Demand       | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 8Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase B Apparent<br>Power Demand for<br>circuit 3       | Rx=S8_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship      | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|--------------------|
| 2EA4H<br>-<br>2EA6H | 11940<br>-<br>11942 | Channel<br>8 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>8Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>B Apparent Power<br>Demand for circuit 3 | Rx=               |          |              | R                  |
| 2EA7H<br>-<br>2EA8H | 11943<br>-<br>11944 | Channel<br>9 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>9Three Phase/Single<br>Phase-three wire:<br>Phase C Current<br>Demand for circuit 3                                                                         | Rx=I9_<br>DMD     | A        | Float        | R                  |
| 2EA9H<br>-<br>2EAAH | 11945<br>-<br>11946 | Channel<br>9 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 9Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Current Demand<br>Prediction for circuit 3                                               | Rx=I9_<br>Pred_DM | A        | Float        | R                  |
| 2EABH<br>-<br>2EACH | 11947<br>-<br>11948 | Channel<br>9 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>9Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Current Demand for<br>circuit 3                                                   | Rx=I9_<br>Max_DMD | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                     | Description                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2EADH<br>-<br>2EAFH | 11949<br>-<br>11951 | Channel<br>9 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand for<br>circuit 9Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase C<br>Current Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2EB0H<br>-<br>2EB1H | 11952<br>-<br>11953 | Channel<br>9 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>9Three Phase/<br>Single Phase-three<br>wire: Phase C Power<br>Demand for circuit 3                                                            | Rx=P9_<br>DMD          | kW       | Float        | R                  |
| 2EB2H<br>-<br>2EB3H | 11954<br>-<br>11955 | Channel<br>9 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 9Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Power Demand<br>Prediction for circuit 3                                   | Rx=P9_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2EB4H<br>-<br>2EB5H | 11956<br>-<br>11957 | Channel<br>9 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>9Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Power Demand for<br>circuit 3                                       | Rx=P9_<br>Max_DMD      | kW       | Float        | R                  |



| Address (H)         | Address (D)         | Parameters                                             | Description                                                                                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2EB6H<br>-<br>2EB8H | 11958<br>-<br>11960 | Channel<br>9 Peak<br>Power<br>Demand<br>Time           | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 9Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase C<br>Power Demand for<br>circuit 3 | Rx=                    |          |              | R                  |
| 2EB9H<br>-<br>2EBAH | 11961<br>-<br>11962 | Channel 9<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>9Three Phase/Single<br>Phase-three wire:<br>Phase C Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q9_<br>DMD          | kvar     | Float        | R                  |
| 2EBBH<br>-<br>2EBCH | 11963<br>-<br>11964 | Channel 9<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 9Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Reactive Power<br>Demand Prediction<br>for circuit 3       | Rx=Q9_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship      | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------|--------------------|
| 2EBDH<br>-<br>2EBEH | 11965<br>-<br>11966 | Channel<br>9 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 9Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase C Reactive<br>Power Demand for<br>circuit 3                                 | Rx=Q9_<br>Max_DMD | kvar     | Float        | R                  |
| 2EBFH<br>-<br>2EC1H | 11967<br>-<br>11969 | Channel<br>9 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>9Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>C Reactive Power<br>Demand for circuit 3 | Rx=               |          |              | R                  |
| 2EC2H<br>-<br>2EC3H | 11970<br>-<br>11971 | Channel 9<br>Apparent<br>Power<br>Demand                 | Single Phase:<br>Apparent Power<br>Demand for circuit<br>9Three Phase/Single<br>Phase-three wire:<br>Phase C Apparent<br>Power Demand for<br>circuit 3                                                     | Rx=S9_<br>DMD     | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                               | Description                                                                                                                                                                                                | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 2EC4H<br>-<br>2EC5H | 11972<br>-<br>11973 | Channel 9<br>Apparent<br>Power<br>Demand<br>Prediction   | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 9Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Apparent Power<br>Demand Prediction<br>for circuit 3                           | Rx=S9_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2EC6H<br>-<br>2EC7H | 11974<br>-<br>11975 | Channel<br>9 Peak<br>Apparent<br>Power<br>Demand         | Single Phase:<br>Maximum Apparent<br>Power Demand for<br>circuit 9Three Phase/<br>Single Phase-three<br>wire: Maximum<br>Phase C Apparent<br>Power Demand for<br>circuit 3                                 | Rx=S9_<br>Max_DMD      | kVA      | Float        | R                  |
| 2EC8H<br>-<br>2ECAH | 11976<br>-<br>11978 | Channel<br>9 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>9Three Phase/Single<br>Phase-three wire:<br>Time Stamp for<br>Maximum Phase<br>C Apparent Power<br>Demand for circuit 3 | Rx=                    |          |              | R                  |
| 2ECBH<br>-<br>2ECCH | 11979<br>-<br>11980 | Channel<br>10 Current<br>Demand                          | Single Phase: Current<br>Demand for circuit<br>10Three Phase/<br>Single Phase-three<br>wire: Phase A Current<br>Demand for circuit 4                                                                       | Rx=l10_<br>DMD         | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2ECDH<br>-<br>2ECEH | 11981<br>-<br>11982 | Channel<br>10 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Current Demand<br>Prediction for circuit 4                               | Rx=l10_<br>Pred_DM | А        | Float        | R                  |
| 2ECFH<br>-<br>2ED0H | 11983<br>-<br>11984 | Channel<br>10 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>10Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Current Demand for<br>circuit 4                                   | Rx=l10_<br>Max_DMD | А        | Float        | R                  |
| 2ED1H<br>-<br>2ED3H | 11985<br>-<br>11987 | Channel<br>10 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase A Current<br>Demand for circuit 4 | Rx=                |          |              | R                  |
| 2ED4H<br>-<br>2ED5H | 11988<br>-<br>11989 | Channel<br>10 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>10Three Phase/<br>Single Phase-three<br>wire: Phase A Power<br>Demand for circuit 4                                                            | Rx=P10_<br>DMD     | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                    | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2ED6H<br>-<br>2ED7H | 11990<br>-<br>11991 | Channel<br>10 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Power Demand<br>Prediction for circuit 4                               | Rx=P10_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2ED8H<br>-<br>2ED9H | 11992<br>-<br>11993 | Channel<br>10 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>10Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Power Demand for<br>circuit 4                                   | Rx=P10_<br>Max_DMD      | kW       | Float        | R                  |
| 2EDAH<br>-<br>2EDCH | 11994<br>-<br>11996 | Channel<br>10 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase A Power<br>Demand for circuit 4 | Rx=                     |          |              | R                  |
| 2EDDH<br>-<br>2EDEH | 11997<br>-<br>11998 | Channel<br>10<br>Reactive<br>Power<br>Demand  | Single Phase:<br>Reactive Power<br>Demand for circuit<br>10Three Phase/Single<br>Phase-three wire:<br>Phase A Reactive<br>Power Demand for<br>circuit 4                                 | Rx=Q10_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2EDFH<br>-<br>2EE0H | 11999<br>-<br>12000 | Channel<br>10<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Reactive Power<br>Demand Prediction<br>for circuit 4                            | Rx=Q10_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2EE1H<br>-<br>2EE2H | 12001<br>-<br>12002 | Channel<br>10 Peak<br>Reactive<br>Power<br>Demand          | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase A Reactive<br>Power Demand for<br>circuit 4                                  | Rx=Q10_<br>Max_DMD      | kvar     | Float        | R                  |
| 2EE3H<br>-<br>2EE5H | 12003<br>-<br>12005 | Channel<br>10 Peak<br>Reactive<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>10Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>A Reactive Power<br>Demand for circuit 4 | Rx=                     |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                       | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2EE6H<br>-<br>2EE7H | 12006<br>-<br>12007 | Channel<br>10<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>10Three Phase/Single<br>Phase-three wire:<br>Phase A Apparent<br>Power Demand for<br>circuit 4                           | Rx=S10_<br>DMD          | kVA      | Float        | R                  |
| 2EE8H<br>-<br>2EE9H | 12008<br>-<br>12009 | Channel<br>10<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Apparent Power<br>Demand Prediction<br>for circuit 4 | Rx=S10_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2ЕЕАН<br>-<br>2ЕЕВН | 12010<br>-<br>12011 | Channel<br>10 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 10Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase A Apparent<br>Power Demand for<br>circuit 4       | Rx=S10_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2EECH<br>-<br>2EEEH | 12012<br>-<br>12014 | Channel<br>10 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>10Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>A Apparent Power<br>Demand for circuit 4 | Rx=                |          |              | R                  |
| 2EEFH<br>-<br>2EF0H | 12015<br>-<br>12016 | Channel<br>11 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>11Three Phase/Single<br>Phase-three wire:<br>Phase B Current<br>Demand for circuit 4                                                                          | Rx=I11_<br>DMD     | A        | Float        | R                  |
| 2EF1H<br>-<br>2EF2H | 12017<br>-<br>12018 | Channel<br>11 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Current Demand<br>Prediction for circuit 4                                                | Rx=l11_<br>Pred_DM | A        | Float        | R                  |
| 2EF3H<br>-<br>2EF4H | 12019<br>-<br>12020 | Channel<br>11 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>11Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Current Demand for<br>circuit 4                                                    | Rx=l11_<br>Max_DMD | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2EF5H<br>-<br>2EF7H | 12021<br>-<br>12023 | Channel<br>11 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase B Current<br>Demand for circuit 4 | Rx=                     |          |              | R                  |
| 2EF8H<br>-<br>2EF9H | 12024<br>-<br>12025 | Channel<br>11 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>11Three Phase/<br>Single Phase-three<br>wire: Phase B Power<br>Demand for circuit 4                                                            | Rx=P11_<br>DMD          | kW       | Float        | R                  |
| 2EFAH<br>-<br>2EFBH | 12026<br>-<br>12027 | Channel<br>11 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Power Demand<br>Prediction for circuit 4                                   | Rx=P11_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2EFCH<br>-<br>2EFDH | 12028<br>-<br>12029 | Channel<br>11 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>11Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Power Demand for<br>circuit 4                                       | Rx=P11_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2EFEH<br>-<br>2F00  | 12030<br>-<br>12032 | Channel<br>11 Peak<br>Power<br>Demand<br>Time              | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase B Power<br>Demand for circuit 4 | Rx=                     |          |              | R                  |
| 2F01H<br>-<br>2F02H | 12033<br>-<br>12034 | Channel<br>11<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>11Three Phase/Single<br>Phase-three wire:<br>Phase B Reactive<br>Power Demand for<br>circuit 4                                 | Rx=Q11_<br>DMD          | kvar     | Float        | R                  |
| 2F03H<br>-<br>2F04H | 12035<br>-<br>12036 | Channel<br>11<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Reactive Power<br>Demand Prediction<br>for circuit 4       | Rx=Q11_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2F05H<br>-<br>2F06H | 12037<br>-<br>12038 | Channel<br>11 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase B Reactive<br>Power Demand for<br>circuit 4                                  | Rx=Q11_<br>Max_DMD | kvar     | Float        | R                  |
| 2F07H<br>-<br>2F09H | 12039<br>-<br>12041 | Channel<br>11 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>11Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>B Reactive Power<br>Demand for circuit 4 | Rx=                |          |              | R                  |
| 2F0AH<br>-<br>2F0BH | 12042<br>-<br>12043 | Channel<br>11<br>Apparent<br>Power<br>Demand              | Single Phase:<br>Apparent Power<br>Demand for circuit<br>11Three Phase/Single<br>Phase-three wire:<br>Phase B Apparent<br>Power Demand for<br>circuit 4                                                      | Rx=S11_<br>DMD     | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F0CH<br>-<br>2F0DH | 12044<br>-<br>12045 | Channel<br>11<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Apparent Power<br>Demand Prediction<br>for circuit 4                            | Rx=S11_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2F0EH<br>-<br>2F0FH | 12046<br>-<br>12047 | Channel<br>11 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 11Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase B Apparent<br>Power Demand for<br>circuit 4                                  | Rx=S11_<br>Max_DMD      | kVA      | Float        | R                  |
| 2F10H<br>-<br>2F12H | 12048<br>-<br>12050 | Channel<br>11 Peak<br>Apparent<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>11Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>B Apparent Power<br>Demand for circuit 4 | Rx=                     |          |              | R                  |
| 2F13H<br>-<br>2F14H | 12051<br>-<br>12052 | Channel<br>12 Current<br>Demand                            | Single Phase: Current<br>Demand for circuit<br>12Three Phase/<br>Single Phase-three<br>wire: Phase C Current<br>Demand for circuit 4                                                                         | Rx=I12_<br>DMD          | A        | Float        | R                  |



| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2F15H<br>-<br>2F16H | 12053<br>-<br>12054 | Channel<br>12 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Current Demand<br>Prediction for circuit 4                               | Rx=I12_<br>Pred_DM | А        | Float        | R                  |
| 2F17H<br>-<br>2F18H | 12055<br>-<br>12056 | Channel<br>12 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>12Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Current Demand for<br>circuit 4                                   | Rx=I12_<br>Max_DMD | A        | Float        | R                  |
| 2F19H<br>-<br>2F1BH | 12057<br>-<br>12059 | Channel<br>12 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase C Current<br>Demand for circuit 4 | Rx=                |          |              | R                  |
| 2F1CH<br>-<br>2F1DH | 12060<br>-<br>12061 | Channel<br>12 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>12Three Phase/<br>Single Phase-three<br>wire: Phase C Power<br>Demand for circuit 4                                                            | Rx=P12_<br>DMD     | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                    | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F1EH<br>-<br>2F1FH | 12062<br>-<br>12063 | Channel<br>12 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Power Demand<br>Prediction for circuit 4                               | Rx=P12_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2F20H<br>-<br>2F21H | 12064<br>-<br>12065 | Channel<br>12 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>12Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Power Demand for<br>circuit 4                                   | Rx=P12_<br>Max_DMD      | kW       | Float        | R                  |
| 2F22H<br>-<br>2F24H | 12066<br>-<br>12068 | Channel<br>12 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase C Power<br>Demand for circuit 4 | Rx=                     |          |              | R                  |
| 2F25H<br>-<br>2F26H | 12069<br>-<br>12070 | Channel<br>12<br>Reactive<br>Power<br>Demand  | Single Phase:<br>Reactive Power<br>Demand for circuit<br>12Three Phase/Single<br>Phase-three wire:<br>Phase C Reactive<br>Power Demand for<br>circuit 4                                 | Rx=Q12_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F27H<br>-<br>2F28H | 12071<br>-<br>12072 | Channel<br>12<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Reactive Power<br>Demand Prediction<br>for circuit 4                            | Rx=Q12_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2F29H<br>-<br>2F2AH | 12073<br>-<br>12074 | Channel<br>12 Peak<br>Reactive<br>Power<br>Demand          | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase C Reactive<br>Power Demand for<br>circuit 4                                  | Rx=Q12_<br>Max_DMD      | kvar     | Float        | R                  |
| 2F2BH<br>-<br>2F2DH | 12075<br>-<br>12077 | Channel<br>12 Peak<br>Reactive<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>12Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>C Reactive Power<br>Demand for circuit 4 | Rx=                     |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                       | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F2EH<br>-<br>2F2FH | 12078<br>-<br>12079 | Channel<br>12<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>12Three Phase/Single<br>Phase-three wire:<br>Phase C Apparent<br>Power Demand for<br>circuit 4                           | Rx=S12_<br>DMD          | kVA      | Float        | R                  |
| 2F30H<br>-<br>2F31H | 12080<br>-<br>12081 | Channel<br>12<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Apparent Power<br>Demand Prediction<br>for circuit 4 | Rx=S12_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2F32H<br>-<br>2F33H | 12082<br>-<br>12083 | Channel<br>12 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 12Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase C Apparent<br>Power Demand for<br>circuit 4       | Rx=S12_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2F34H<br>-<br>2F36H | 12084<br>-<br>12086 | Channel<br>12 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>12Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>C Apparent Power<br>Demand for circuit 4 | Rx=                |          |              | R                  |
| 2F37H<br>-<br>2F38H | 12087<br>-<br>12088 | Channel<br>13 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>13Three Phase/<br>Single Phase-three<br>wire: Phase A Current<br>Demand for circuit 5                                                                         | Rx=I13_<br>DMD     | A        | Float        | R                  |
| 2F39H<br>-<br>2F3AH | 12089<br>-<br>12090 | Channel<br>13 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Current Demand<br>Prediction for circuit 5                                                | Rx=l13_<br>Pred_DM | A        | Float        | R                  |
| 2F3BH<br>-<br>2F3CH | 12091<br>-<br>12092 | Channel<br>13 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>13Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Current Demand for<br>circuit 5                                                    | Rx=I13_<br>Max_DMD | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F3DH<br>-<br>2F3FH | 12093<br>-<br>12095 | Channel<br>13 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase A Current<br>Demand for circuit 5 | Rx=                     |          |              | R                  |
| 2F40H<br>-<br>2F41H | 12096<br>-<br>12097 | Channel<br>13 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>13Three Phase/<br>Single Phase-three<br>wire: Phase A Power<br>Demand for circuit 5                                                            | Rx=P13_<br>DMD          | kW       | Float        | R                  |
| 2F42H<br>-<br>2F43H | 12098<br>-<br>12099 | Channel<br>13 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Power Demand<br>Prediction for circuit 5                                   | Rx=P13_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2F44H<br>-<br>2F45H | 12100<br>-<br>12101 | Channel<br>13 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>13Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Power Demand for<br>circuit 5                                       | Rx=P13_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F46H<br>-<br>2F48H | 12102<br>-<br>12104 | Channel<br>13 Peak<br>Power<br>Demand<br>Time              | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase A Power<br>Demand for circuit 5 | Rx=                     |          |              | R                  |
| 2F49H<br>-<br>2F4AH | 12105<br>-<br>12106 | Channel<br>13<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>13Three Phase/Single<br>Phase-three wire:<br>Phase A Reactive<br>Power Demand for<br>circuit 5                                 | Rx=Q13_<br>DMD          | kvar     | Float        | R                  |
| 2F4BH<br>-<br>2F4CH | 12107<br>-<br>10108 | Channel<br>13<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Reactive Power<br>Demand Prediction<br>for circuit 5       | Rx=Q13_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2F4DH<br>-<br>2F4EH | 12109<br>-<br>12110 | Channel<br>13 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase A Reactive<br>Power Demand for<br>circuit 5                                  | Rx=Q13_<br>Max_DMD | kvar     | Float        | R                  |
| 2F4FH<br>-<br>2F51H | 12111<br>-<br>12113 | Channel<br>13 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>13Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>A Reactive Power<br>Demand for circuit 5 | Rx=                |          |              | R                  |
| 2F52H<br>-<br>2F53H | 12114<br>-<br>12115 | Channel<br>13<br>Apparent<br>Power<br>Demand              | Single Phase:<br>Apparent Power<br>Demand for circuit<br>13Three Phase/Single<br>Phase-three wire:<br>Phase A Apparent<br>Power Demand for<br>circuit 5                                                      | Rx=S13_<br>DMD     | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F54H<br>-<br>2F55H | 12116<br>-<br>12117 | Channel<br>13<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Apparent Power<br>Demand Prediction<br>for circuit 5                            | Rx=S13_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2F56H<br>-<br>2F57H | 12118<br>-<br>12119 | Channel<br>13 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 13Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase A Apparent<br>Power Demand for<br>circuit 5                                  | Rx=S13_<br>Max_DMD      | kVA      | Float        | R                  |
| 2F58H<br>-<br>2F5AH | 12120<br>-<br>12122 | Channel<br>13 Peak<br>Apparent<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>13Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>A Apparent Power<br>Demand for circuit 5 | Rx=                     |          |              | R                  |
| 2F5BH<br>-<br>2F5CH | 12123<br>-<br>12124 | Channel<br>14 Current<br>Demand                            | Single Phase: Current<br>Demand for circuit<br>14Three Phase/Single<br>Phase-three wire:<br>Phase B Current<br>Demand for circuit 5                                                                          | Rx=I14_<br>DMD          | A        | Float        | R                  |



| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2F5DH<br>-<br>2F5EH | 12125<br>-<br>12126 | Channel<br>14 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Current Demand<br>Prediction for circuit<br>5                            | Rx=I14_<br>Pred_DM | A        | Float        | R                  |
| 2F5FH<br>-<br>2F60H | 12127<br>-<br>12128 | Channel<br>14 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>14Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Current Demand for<br>circuit 5                                   | Rx=l14_<br>Max_DMD | A        | Float        | R                  |
| 2F61H<br>-<br>2F63H | 12129<br>-<br>12131 | Channel<br>14 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase B Current<br>Demand for circuit 5 | Rx=                |          |              | R                  |
| 2F64H<br>-<br>2F65H | 12132<br>-<br>12133 | Channel<br>14 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>14Three Phase/<br>Single Phase-three<br>wire: Phase B Power<br>Demand for circuit 5                                                            | Rx=P14_<br>DMD     | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                    | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F66H<br>-<br>2F67H | 12134<br>-<br>12135 | Channel<br>14 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Power Demand<br>Prediction for circuit 5                               | Rx=P14_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2F68H<br>-<br>2F69H | 12136<br>-<br>12137 | Channel<br>14 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>14Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Power Demand for<br>circuit 5                                   | Rx=P14_<br>Max_DMD      | kW       | Float        | R                  |
| 2F6AH<br>-<br>2F6CH | 12138<br>-<br>12140 | Channel<br>14 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase B Power<br>Demand for circuit 5 | Rx=                     |          |              | R                  |
| 2F6DH<br>-<br>2F6EH | 12141<br>-<br>12142 | Channel<br>14<br>Reactive<br>Power<br>Demand  | Single Phase:<br>Reactive Power<br>Demand for circuit<br>14Three Phase/Single<br>Phase-three wire:<br>Phase B Reactive<br>Power Demand for<br>circuit 5                                 | Rx=Q14_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F6FH<br>-<br>2F70H | 12143<br>-<br>12144 | Channel<br>14<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Reactive Power<br>Demand Prediction<br>for circuit 5                            | Rx=Q14_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2F71H<br>-<br>2F72H | 12145<br>-<br>12146 | Channel<br>14 Peak<br>Reactive<br>Power<br>Demand          | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase B Reactive<br>Power Demand for<br>circuit 5                                  | Rx=Q14_<br>Max_DMD      | kvar     | Float        | R                  |
| 2F73H<br>-<br>2F75H | 12147<br>-<br>12149 | Channel<br>14 Peak<br>Reactive<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>14Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>B Reactive Power<br>Demand for circuit 5 | Rx=                     |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                       | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F76H<br>-<br>2F77H | 12150<br>-<br>12151 | Channel<br>14<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>14Three Phase/Single<br>Phase-three wire:<br>Phase B Apparent<br>Power Demand for<br>circuit 5                           | Rx=S14_<br>DMD          | kVA      | Float        | R                  |
| 2F78H<br>-<br>2F79H | 12152<br>-<br>12153 | Channel<br>14<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Apparent Power<br>Demand Prediction<br>for circuit 5 | Rx=S14_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2F7АН<br>-<br>2F7ВН | 12154<br>-<br>12155 | Channel<br>14 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 14Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase B Apparent<br>Power Demand for<br>circuit 5       | Rx=S14_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2F7CH<br>-<br>2F7EH | 12156<br>-<br>12158 | Channel<br>14 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>14Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>B Apparent Power<br>Demand for circuit 5 | Rx=                |          |              | R                  |
| 2F7FH<br>-<br>2F80H | 12159<br>-<br>12160 | Channel<br>15 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>15Three Phase/<br>Single Phase-three<br>wire: Phase C Current<br>Demand for circuit 5                                                                         | Rx=I15_<br>DMD     | A        | Float        | R                  |
| 2F81G<br>-<br>2F82H | 12161<br>-<br>12162 | Channel<br>15 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Current Demand<br>Prediction for circuit 5                                                | Rx=l15_<br>Pred_DM | A        | Float        | R                  |
| 2F83H<br>-<br>2F84H | 12163<br>-<br>12164 | Channel<br>15 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>15Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Current Demand for<br>circuit 5                                                    | Rx=l15_<br>Max_DMD | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F85H<br>-<br>2F87H | 12165<br>-<br>12167 | Channel<br>15 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase C Current<br>Demand for circuit 5 | Rx=                     |          |              | R                  |
| 2F88H<br>-<br>2F89H | 12168<br>-<br>12169 | Channel<br>15 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>15Three Phase/<br>Single Phase-three<br>wire: Phase C Power<br>Demand for circuit 5                                                            | Rx=P15_<br>DMD          | kW       | Float        | R                  |
| 2F8AH<br>-<br>2F8BH | 12170<br>-<br>12171 | Channel<br>15 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Power Demand<br>Prediction for circuit 5                                   | Rx=P15_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2F8CH<br>-<br>2F8DH | 12172<br>-<br>12173 | Channel<br>15 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>15Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Power Demand for<br>circuit 5                                       | Rx=P15_<br>Max_DMD      | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F8EH<br>-<br>2F90H | 12174<br>-<br>12176 | Channel<br>15 Peak<br>Power<br>Demand<br>Time              | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase C Power<br>Demand for circuit 5 | Rx=                     |          |              | R                  |
| 2F91H<br>-<br>2F92H | 12177<br>-<br>12178 | Channel<br>15<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>15Three Phase/Single<br>Phase-three wire:<br>Phase C Reactive<br>Power Demand for<br>circuit 5                                 | Rx=Q15_<br>DMD          | kvar     | Float        | R                  |
| 2F93H<br>-<br>2F94H | 12179<br>-<br>12180 | Channel<br>15<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Reactive Power<br>Demand Prediction<br>for circuit 5       | Rx=Q15_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2F95H<br>-<br>2F96H | 12181<br>-<br>12182 | Channel<br>15 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase C Reactive<br>Power Demand for<br>circuit 5                                  | Rx=Q15_<br>Max_DMD | kvar     | Float        | R                  |
| 2F97H<br>-<br>2F99H | 12183<br>-<br>12185 | Channel<br>15 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>15Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>C Reactive Power<br>Demand for circuit 5 | Rx=                |          |              | R                  |
| 2F9AH<br>-<br>2F9BH | 12186<br>-<br>12187 | Channel<br>15<br>Apparent<br>Power<br>Demand              | Single Phase:<br>Apparent Power<br>Demand for circuit<br>15Three Phase/Single<br>Phase-three wire:<br>Phase C Apparent<br>Power Demand for<br>circuit 5                                                      | Rx=S15_<br>DMD     | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2F9CH<br>-<br>2F9DH | 12188<br>-<br>12189 | Channel<br>15<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Apparent Power<br>Demand Prediction<br>for circuit 5                            | Rx=S15_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2F9EH<br>-<br>2F9FH | 12190<br>-<br>12191 | Channel<br>15 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 15Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase C Apparent<br>Power Demand for<br>circuit 5                                  | Rx=S15_<br>Max_DMD      | kVA      | Float        | R                  |
| 2FA0H<br>-<br>2FA2H | 12192<br>-<br>12194 | Channel<br>15 Peak<br>Apparent<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>15Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>C Apparent Power<br>Demand for circuit 5 | Rx=                     |          |              | R                  |
| 2FA3H<br>-<br>2FA4H | 12195<br>-<br>12196 | Channel<br>16 Current<br>Demand                            | Single Phase: Current<br>Demand for circuit<br>16Three Phase/<br>Single Phase-three<br>wire: Phase A Current<br>Demand for circuit 6                                                                         | Rx=I16_<br>DMD          | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2FA5H<br>-<br>2FA6H | 12197<br>-<br>12198 | Channel<br>16 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Current Demand<br>Prediction for circuit 6                               | Rx=l16_<br>Pred_DM | А        | Float        | R                  |
| 2FA7H<br>-<br>2FA8H | 12199<br>-<br>12200 | Channel<br>16 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>16Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Current Demand for<br>circuit 6                                   | Rx=l16_<br>Max_DMD | A        | Float        | R                  |
| 2FA9H<br>-<br>2FABH | 12201<br>-<br>12203 | Channel<br>16 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase A Current<br>Demand for circuit 6 | Rx=                |          |              | R                  |
| 2FACH<br>-<br>2FADH | 12204<br>-<br>12205 | Channel<br>16 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>16Three Phase/<br>Single Phase-three<br>wire: Phase A Power<br>Demand for circuit 6                                                            | Rx=P16_<br>DMD     | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                    | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FAEH<br>-<br>2FAFH | 12206<br>-<br>12207 | Channel<br>16 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Power Demand<br>Prediction for circuit 6                               | Rx=P16_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2FB0H<br>-<br>2FB1H | 12208<br>-<br>12209 | Channel<br>16 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>16Three Phase/Single<br>Phase-three wire:<br>Maximum Phase A<br>Power Demand for<br>circuit 6                                   | Rx=P16_<br>Max_DMD      | kW       | Float        | R                  |
| 2FB2H<br>-<br>2FB4H | 12210<br>-<br>12212 | Channel<br>16 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase A Power<br>Demand for circuit 6 | Rx=                     |          |              | R                  |
| 2FB5H<br>-<br>2FB6H | 12213<br>-<br>12214 | Channel<br>16<br>Reactive<br>Power<br>Demand  | Single Phase:<br>Reactive Power<br>Demand for circuit<br>16Three Phase/Single<br>Phase-three wire:<br>Phase A Reactive<br>Power Demand for<br>circuit 6                                 | Rx=Q16_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FB7H<br>-<br>2FB8H | 12215<br>-<br>12216 | Channel<br>16<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Reactive Power<br>Demand Prediction<br>for circuit 6                            | Rx=Q16_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 2FB9H<br>-<br>2FBAH | 12217<br>-<br>12218 | Channel<br>16 Peak<br>Reactive<br>Power<br>Demand          | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase A Reactive<br>Power Demand for<br>circuit 6                                  | Rx=Q16_<br>Max_DMD      | kvar     | Float        | R                  |
| 2FBBH<br>-<br>2FBDH | 12219<br>-<br>12221 | Channel<br>16 Peak<br>Reactive<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>16Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>A Reactive Power<br>Demand for circuit 6 | Rx=                     |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                       | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FBEH<br>-<br>2FBFH | 12222<br>-<br>12223 | Channel<br>16<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>16Three Phase/Single<br>Phase-three wire:<br>Phase A Apparent<br>Power Demand for<br>circuit 6                           | Rx=S16_<br>DMD          | kVA      | Float        | R                  |
| 2FC0H<br>-<br>2FC1H | 12224<br>-<br>12225 | Channel<br>16<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Phase<br>A Apparent Power<br>Demand Prediction<br>for circuit 6 | Rx=S16_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2FC2H<br>-<br>2FC3H | 12226<br>-<br>12227 | Channel<br>16 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 16Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase A Apparent<br>Power Demand for<br>circuit 6       | Rx=S16_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2FC4H<br>-<br>2FC6H | 12228<br>-<br>12230 | Channel<br>16 Peak<br>Apparent<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>16Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>A Apparent Power<br>Demand for circuit 6 | Rx=                |          |              | R                  |
| 2FC7H<br>-<br>2FC8H | 12231<br>-<br>12232 | Channel<br>17 Current<br>Demand                           | Single Phase: Current<br>Demand for circuit<br>17Three Phase/Single<br>Phase-three wire:<br>Phase B Current<br>Demand for circuit 6                                                                          | Rx=I17_<br>DMD     | A        | Float        | R                  |
| 2FC9H<br>-<br>2FCAH | 12233<br>-<br>12234 | Channel<br>17 Current<br>Demand<br>Prediction             | Single Phase: Current<br>Demand Prediction<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Current Demand<br>Prediction for circuit 6                                                | Rx=l17_<br>Pred_DM | A        | Float        | R                  |
| 2FCBH<br>-<br>2FCCH | 12235<br>-<br>12236 | Channel<br>17 Peak<br>Current<br>Demand                   | Single Phase:<br>Maximum Current<br>Demand for circuit<br>17Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Current Demand for<br>circuit 6                                                    | Rx=l17_<br>Max_DMD | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FCDH<br>-<br>2FCFH | 12237<br>-<br>12239 | Channel<br>17 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase B Current<br>Demand for circuit 6 | Rx=                     |          |              | R                  |
| 2FD0H<br>-<br>2FD1H | 12240<br>-<br>12241 | Channel<br>17 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>17Three Phase/<br>Single Phase-three<br>wire: Phase B Power<br>Demand for circuit 6                                                            | Rx=P17_<br>DMD          | kW       | Float        | R                  |
| 2FD2H<br>-<br>2FD3H | 12242<br>-<br>12243 | Channel<br>17 Power<br>Demand<br>Prediction     | Single Phase: Power<br>Demand Prediction<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Power Demand<br>Prediction for circuit 6                                   | Rx=P17_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2FD4H<br>-<br>2FD5H | 12244<br>-<br>12245 | Channel<br>17 Peak<br>Power<br>Demand           | Single Phase:<br>Maximum Power<br>Demand for circuit<br>17Three Phase/Single<br>Phase-three wire:<br>Maximum Phase B<br>Power Demand for<br>circuit 6                                       | Rx=P17_<br>Max_DMD      | kW       | Float        | R                  |







| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FD6H<br>-<br>2FD8H | 12246<br>-<br>12248 | Channel<br>17 Peak<br>Power<br>Demand<br>Time              | Single Phase: Time<br>Stamp for Maximum<br>Power Demand<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase B Power<br>Demand for circuit 6 | Rx=                     |          |              | R                  |
| 2FD9H<br>-<br>2FDAH | 12249<br>-<br>12250 | Channel<br>17<br>Reactive<br>Power<br>Demand               | Single Phase:<br>Reactive Power<br>Demand for circuit<br>17Three Phase/Single<br>Phase-three wire:<br>Phase B Reactive<br>Power Demand for<br>circuit 6                                 | Rx=Q17_<br>DMD          | kvar     | Float        | R                  |
| 2FDBH<br>-<br>2FDCH | 12251<br>-<br>12252 | Channel<br>17<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Reactive Power<br>Demand Prediction<br>for circuit 6       | Rx=Q17_<br>Pred_<br>DMD | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                | Description                                                                                                                                                                                                  | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2FDDH<br>-<br>2FDEH | 12253<br>-<br>12254 | Channel<br>17 Peak<br>Reactive<br>Power<br>Demand         | Single Phase:<br>Maximum Reactive<br>Power Demand<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase B Reactive<br>Power Demand for<br>circuit 6                                  | Rx=Q17_<br>Max_DMD | kvar     | Float        | R                  |
| 2FDFH<br>-<br>2FE1H | 12255<br>-<br>12257 | Channel<br>17 Peak<br>Reactive<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>17Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>B Reactive Power<br>Demand for circuit 6 | Rx=                |          |              | R                  |
| 2FE2H<br>-<br>2FE3H | 12258<br>-<br>12259 | Channel<br>17<br>Apparent<br>Power<br>Demand              | Single Phase:<br>Apparent Power<br>Demand for circuit<br>17Three Phase/Single<br>Phase-three wire:<br>Phase B Apparent<br>Power Demand for<br>circuit 6                                                      | Rx=S17_<br>DMD     | kVA      | Float        | R                  |







| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FE4H<br>-<br>2FE5H | 12260<br>-<br>12261 | Channel<br>17<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Phase<br>B Apparent Power<br>Demand Prediction<br>for circuit 6                            | Rx=S17_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 2FE6H<br>-<br>2FE7H | 12262<br>-<br>12263 | Channel<br>17 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 17Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase B Apparent<br>Power Demand for<br>circuit 6                                  | Rx=S17_<br>Max_DMD      | kVA      | Float        | R                  |
| 2FE8H<br>-<br>2FEAH | 12264<br>-<br>12266 | Channel<br>17 Peak<br>Apparent<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>17Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>B Apparent Power<br>Demand for circuit 6 | Rx=                     |          |              | R                  |
| 2FEBH<br>-<br>2FECH | 12267<br>-<br>12268 | Channel<br>18 Current<br>Demand                            | Single Phase: Current<br>Demand for circuit<br>18Three Phase/<br>Single Phase-three<br>wire: Phase C Current<br>Demand for circuit 6                                                                         | Rx=I18_<br>DMD          | A        | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                      | Description                                                                                                                                                                                 | Relationship       | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------|--------------------|
| 2FEDH<br>-<br>2FEEH | 12269<br>-<br>12270 | Channel<br>18 Current<br>Demand<br>Prediction   | Single Phase: Current<br>Demand Prediction<br>for circuit 18Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Current Demand<br>Prediction for circuit 6                               | Rx=l18_<br>Pred_DM | А        | Float        | R                  |
| 2FEFH<br>-<br>2FF0H | 12271<br>-<br>12272 | Channel<br>18 Peak<br>Current<br>Demand         | Single Phase:<br>Maximum Current<br>Demand for circuit<br>18Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Current Demand for<br>circuit 6                                   | Rx=l18_<br>Max_DMD | А        | Float        | R                  |
| 2FF1H<br>-<br>2FF3H | 12273<br>-<br>12275 | Channel<br>18 Peak<br>Current<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Current Demand<br>for circuit 18Three<br>Phase/Single Phase-<br>three wire: Time<br>Stamp for Maximum<br>Phase C Current<br>Demand for circuit 6 | Rx=                |          |              | R                  |
| 2FF4H<br>-<br>2FF5H | 12276<br>-<br>12277 | Channel<br>18 Power<br>Demand                   | Single Phase: Power<br>Demand for circuit<br>18Three Phase/<br>Single Phase-three<br>wire: Phase C Power<br>Demand for circuit 6                                                            | Rx=P18_<br>DMD     | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                    | Description                                                                                                                                                                             | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FF6H<br>-<br>2FF7H | 12278<br>-<br>12279 | Channel<br>18 Power<br>Demand<br>Prediction   | Single Phase: Power<br>Demand Prediction<br>for circuit 18Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Power Demand<br>Prediction for circuit 6                               | Rx=P18_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 2FF8H<br>-<br>2FF9H | 12280<br>-<br>12281 | Channel<br>18 Peak<br>Power<br>Demand         | Single Phase:<br>Maximum Power<br>Demand for circuit<br>18Three Phase/Single<br>Phase-three wire:<br>Maximum Phase C<br>Power Demand for<br>circuit 6                                   | Rx=P18_<br>Max_DMD      | kW       | Float        | R                  |
| 2FFAH<br>-<br>2FFCH | 12282<br>-<br>12284 | Channel<br>18 Peak<br>Power<br>Demand<br>Time | Single Phase: Time<br>Stamp for Maximum<br>Power Demand for<br>circuit 18Three Phase/<br>Single Phase-three<br>wire: Time Stamp for<br>Maximum Phase C<br>Power Demand for<br>circuit 6 | Rx=                     |          |              | R                  |
| 2FFDH<br>-<br>2FFEH | 12285<br>-<br>12286 | Channel<br>18<br>Reactive<br>Power<br>Demand  | Single Phase: Reactive<br>Power Demand for<br>circuit 18Three Phase/<br>Single Phase-three<br>wire: Phase C Reactive<br>Power Demand for<br>circuit 6                                   | Rx=Q18_<br>DMD          | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                                                  | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 2FFFH<br>-<br>3000H | 12287<br>-<br>12288 | Channel<br>18<br>Reactive<br>Power<br>Demand<br>Prediction | Single Phase:<br>Reactive Power<br>Demand Prediction<br>for circuit 18Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Reactive Power<br>Demand Prediction<br>for circuit 6                            | Rx=Q18_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 3001H<br>-<br>3002H | 12289<br>-<br>12290 | Channel<br>18 Peak<br>Reactive<br>Power<br>Demand          | Single Phase:<br>Maximum Reactive<br>Power Demand for<br>circuit 18Three Phase/<br>Single Phase-three<br>wire: Maximum Phase<br>C Reactive Power<br>Demand for circuit 6                                     | Rx=Q18_<br>Max_DMD      | kvar     | Float        | R                  |
| 3003H<br>-<br>3005H | 12291<br>-<br>12293 | Channel<br>18 Peak<br>Reactive<br>Power<br>Demand<br>Time  | Single Phase: Time<br>Stamp for Maximum<br>Reactive Power<br>Demand for circuit<br>18Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>C Reactive Power<br>Demand for circuit 6 | Rx=                     |          |              | R                  |



256



| Address (H)         | Address (D)         | Parameters                                                 | Description                                                                                                                                                                       | Relationship            | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------|--------------------|
| 3006H<br>-<br>3007H | 12294<br>-<br>12295 | Channel<br>18<br>Apparent<br>Power<br>Demand               | Single Phase:<br>Apparent Power<br>Demand for circuit<br>18Three Phase/Single<br>Phase-three wire:<br>Phase C Apparent<br>Power Demand for<br>circuit 6                           | Rx=S18_<br>DMD          | kVA      | Float        | R                  |
| 3008Н<br>-<br>3009Н | 12296<br>-<br>12297 | Channel<br>18<br>Apparent<br>Power<br>Demand<br>Prediction | Single Phase:<br>Apparent Power<br>Demand Prediction<br>for circuit 18Three<br>Phase/Single Phase-<br>three wire: Phase<br>C Apparent Power<br>Demand Prediction<br>for circuit 6 | Rx=S18_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 300AH<br>-<br>300BH | 12298<br>-<br>12299 | Channel<br>18 Peak<br>Apparent<br>Power<br>Demand          | Single Phase:<br>Maximum Apparent<br>Power Demand<br>for circuit 18Three<br>Phase/Single Phase-<br>three wire: Maximum<br>Phase C Apparent<br>Power Demand for<br>circuit 6       | Rx=S18_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                  | Description                                                                                                                                                                                                  | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 300CH<br>-<br>300EH | 12300<br>-<br>12302 | Channel<br>18 Peak<br>Apparent<br>Power<br>Demand<br>Time   | Single Phase: Time<br>Stamp for Maximum<br>Apparent Power<br>Demand for circuit<br>18Three Phase/<br>Single Phase-three<br>wire: Time Stamp<br>for Maximum Phase<br>C Apparent Power<br>Demand for circuit 6 | Rx=                    |          |              | R                  |
| 300FH<br>-<br>3010H | 12303<br>-<br>12304 | User<br>Channel<br>1 Total<br>Power<br>Demand               | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand for<br>circuit 1                                                                                                                 | Rx=P1_<br>DMD          | kW       | Float        | R                  |
| 3011H<br>-<br>3012H | 12305<br>-<br>12306 | User<br>Channel<br>1 Total<br>Power<br>Demand<br>Prediction | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand<br>Prediction for circuit 1                                                                                                      | Rx=P1_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 3013H<br>-<br>3014H | 12307<br>-<br>12308 | User<br>Channel<br>1 Total<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Power Demand<br>for circuit 1                                                                                                         | Rx=P1_<br>Max_DMD      | kW       | Float        | R                  |
| 3015H<br>-<br>3017H | 12309<br>-<br>12311 | User<br>Channel<br>1 Total<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Power Demand<br>for circuit 1                                                                                       | Rx=                    |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3018H<br>-<br>3019H | 12312<br>-<br>12313 | User<br>Channel<br>1 Total<br>Reactive<br>Power<br>Demand               | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand for circuit 1                           | Rx=Q1_<br>DMD          | kvar     | Float        | R                  |
| 301AH<br>-<br>301BH | 12314<br>-<br>12315 | User<br>Channel<br>1 Total<br>Reactive<br>Power<br>Demand<br>Prediction | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand Prediction<br>for circuit 1             | Rx=Q1_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 301CH<br>-<br>301DH | 12316<br>-<br>12317 | User<br>Channel<br>1 Total<br>Reactive<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Reactive Power<br>Demand for circuit 1                   | Rx=Q1_<br>Max_DMD      | kvar     | Float        | R                  |
| 301EH<br>-<br>3020H | 12318<br>-<br>12320 | User<br>Channel<br>1 Total<br>Reactive<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Reactive Power<br>Demand for circuit 1 | Rx=                    |          |              | R                  |
| 3021H<br>-<br>3022H | 12321<br>-<br>12322 | User<br>Channel<br>1 Total<br>Apparent<br>Power<br>Demand               | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand for circuit 1                           | Rx=S1_<br>DMD          | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3023H<br>-<br>3024H | 12323<br>-<br>12324 | User<br>Channel<br>1 Total<br>Apparent<br>Power<br>Demand<br>Prediction | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand Prediction<br>for circuit 1             | Rx=S1_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 3025H<br>-<br>3026H | 12325<br>-<br>12326 | User<br>Channel<br>1 Total<br>Apparent<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Apparent Power<br>Demand for circuit 1                   | Rx=S1_<br>Max_DMD      | kVA      | Float        | R                  |
| 3027H<br>-<br>3029H | 12327<br>-<br>12329 | User<br>Channel<br>1 Total<br>Apparent<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Apparent Power<br>Demand for circuit 1 | Rx=                    |          |              | R                  |
| 302AH<br>-<br>302BH | 12330<br>-<br>12331 | User<br>Channel<br>2 Total<br>Power<br>Demand                           | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand for<br>circuit 2                                    | Rx=P2_<br>DMD          | kW       | Float        | R                  |
| 302CH<br>-<br>302DH | 12332<br>-<br>12333 | User<br>Channel<br>2 Total<br>Power<br>Demand<br>Prediction             | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand<br>Prediction for circuit 2                         | Rx=P2_<br>Pred_<br>DMD | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 302EH<br>-<br>302FH | 12334<br>-<br>12335 | User<br>Channel<br>2 Total<br>Power<br>Demand<br>Peak                   | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Power Demand<br>for circuit 2                   | Rx=P2_<br>Max_DMD      | kW       | Float        | R                  |
| 3030H<br>-<br>3032H | 12336<br>-<br>12338 | User<br>Channel<br>2 Total<br>Power<br>Demand<br>Peak Time              | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Power Demand<br>for circuit 2 | Rx=                    |          |              | R                  |
| 3033H<br>-<br>3034H | 12339<br>-<br>12340 | User<br>Channel<br>2 Total<br>Reactive<br>Power<br>Demand               | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand for circuit 2                  | Rx=Q2_<br>DMD          | kvar     | Float        | R                  |
| 3035H<br>-<br>3036H | 12341<br>-<br>12342 | User<br>Channel<br>2 Total<br>Reactive<br>Power<br>Demand<br>Prediction | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand Prediction<br>for circuit 2    | Rx=Q2_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 3037H<br>-<br>3038H | 12343<br>-<br>12344 | User<br>Channel<br>2 Total<br>Reactive<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Reactive Power<br>Demand for circuit 2          | Rx=Q2_<br>Max_DMD      | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3039H<br>-<br>303BH | 12345<br>-<br>12347 | User<br>Channel<br>2 Total<br>Reactive<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Reactive Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |
| 303CH<br>-<br>303DH | 12348<br>-<br>12349 | User<br>Channel<br>2 Total<br>Apparent<br>Power<br>Demand               | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand for circuit 2                           | Rx=S2_<br>DMD          | kVA      | Float        | R                  |
| 303EH<br>-<br>303FH | 12350<br>-<br>12351 | User<br>Channel<br>2 Total<br>Apparent<br>Power<br>Demand<br>Prediction | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand Prediction<br>for circuit 2             | Rx=S2_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 3040H<br>-<br>3041H | 12352<br>-<br>12353 | User<br>Channel<br>2 Total<br>Apparent<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Apparent Power<br>Demand for circuit 2                   | Rx=S2_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                             | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3042H<br>-<br>3044H | 12354<br>-<br>12356 | User<br>Channel<br>2 Total<br>Apparent<br>Power<br>Demand<br>Peak Time | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Apparent Power<br>Demand for circuit 2 | Rx=                    |          |              | R                  |
| 3045H<br>-<br>3046H | 12357<br>-<br>12358 | User<br>Channel<br>3 Total<br>Power<br>Demand                          | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand for<br>circuit 3                                    | Rx=P3_<br>DMD          | kW       | Float        | R                  |
| 3047H<br>-<br>3048H | 12359<br>-<br>12360 | User<br>Channel<br>3 Total<br>Power<br>Demand<br>Prediction            | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand<br>Prediction for circuit 3                         | Rx=P3_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 3049H<br>-<br>304AH | 12361<br>-<br>12362 | User<br>Channel<br>3 Total<br>Power<br>Demand<br>Peak                  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Power Demand<br>for circuit 3                            | Rx=P3_<br>Max_DMD      | kW       | Float        | R                  |
| 304BH<br>-<br>304DH | 12363<br>-<br>12365 | User<br>Channel<br>3 Total<br>Power<br>Demand<br>Peak Time             | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Power Demand<br>for circuit 3          | Rx=                    |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 304EH<br>-<br>304FH | 12366<br>-<br>12367 | User<br>Channel<br>3 Total<br>Reactive<br>Power<br>Demand               | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand for circuit 3                           | Rx=Q3_<br>DMD          | kvar     | Float        | R                  |
| 3050H<br>-<br>3051H | 12368<br>-<br>12369 | User<br>Channel<br>3 Total<br>Reactive<br>Power<br>Demand<br>Prediction | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand Prediction<br>for circuit 3             | Rx=Q3_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 3052H<br>-<br>3053H | 12370<br>-<br>12371 | User<br>Channel<br>3 Total<br>Reactive<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Reactive Power<br>Demand for circuit 3                   | Rx=Q3_<br>Max_DMD      | kvar     | Float        | R                  |
| 3054H<br>-<br>3056H | 12372<br>-<br>12374 | User<br>Channel<br>3 Total<br>Reactive<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Reactive Power<br>Demand for circuit 3 | Rx=                    |          |              | R                  |
| 3057H<br>-<br>3058H | 12375<br>-<br>12376 | User<br>Channel<br>3 Total<br>Apparent<br>Power<br>Demand               | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand for circuit 3                           | Rx=S3_<br>DMD          | kVA      | Float        | R                  |



| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3059H<br>-<br>305AH | 12377<br>-<br>12378 | User<br>Channel<br>3 Total<br>Apparent<br>Power<br>Demand<br>Prediction | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand Prediction<br>for circuit 3             | Rx=S3_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 305BH<br>-<br>305CH | 12379<br>-<br>12380 | User<br>Channel<br>3 Total<br>Apparent<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Apparent Power<br>Demand for circuit 3                   | Rx=S3_<br>Max_DMD      | kVA      | Float        | R                  |
| 305DH<br>-<br>305FH | 12381<br>-<br>12383 | User<br>Channel<br>3 Total<br>Apparent<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Apparent Power<br>Demand for circuit 3 | Rx=                    |          |              | R                  |
| 3060H<br>-<br>3061H | 12384<br>-<br>12385 | User<br>Channel<br>4 Total<br>Power<br>Demand                           | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand for<br>circuit 4                                    | Rx=P4_<br>DMD          | kW       | Float        | R                  |
| 3062H<br>-<br>3063H | 12386<br>-<br>12387 | User<br>Channel<br>4 Total<br>Power<br>Demand<br>Prediction             | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand<br>Prediction for circuit 4                         | Rx=P4_<br>Pred_<br>DMD | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3064H<br>-<br>3065H | 12388<br>-<br>12389 | User<br>Channel<br>4 Total<br>Power<br>Demand<br>Peak                   | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Power Demand<br>for circuit 4                   | Rx=P4_<br>Max_DMD      | kW       | Float        | R                  |
| 3066H<br>-<br>3068H | 12390<br>-<br>12392 | User<br>Channel<br>4 Total<br>Power<br>Demand<br>Peak Time              | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Power Demand<br>for circuit 4 | Rx=                    |          |              | R                  |
| 3069H<br>-<br>306AH | 12393<br>-<br>12394 | User<br>Channel<br>4 Total<br>Reactive<br>Power<br>Demand               | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand for circuit 4                  | Rx=Q4_<br>DMD          | kvar     | Float        | R                  |
| 306BH<br>-<br>306CH | 12395<br>-<br>12396 | User<br>Channel<br>4 Total<br>Reactive<br>Power<br>Demand<br>Prediction | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand Prediction<br>for circuit 4    | Rx=Q4_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 306DH<br>-<br>306EH | 12397<br>-<br>12398 | User<br>Channel<br>4 Total<br>Reactive<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Reactive Power<br>Demand for circuit 4          | Rx=Q4_<br>Max_DMD      | kvar     | Float        | R                  |



| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 306FH<br>-<br>3071H | 12399<br>-<br>12401 | User<br>Channel<br>4 Total<br>Reactive<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Reactive Power<br>Demand for circuit 4 | Rx=                    |          |              | R                  |
| 3072H<br>-<br>3073H | 12402<br>-<br>12403 | User<br>Channel<br>4 Total<br>Apparent<br>Power<br>Demand               | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand for circuit 4                           | Rx=S4_<br>DMD          | kVA      | Float        | R                  |
| 3074H<br>-<br>3075H | 12404<br>-<br>12405 | User<br>Channel<br>4 Total<br>Apparent<br>Power<br>Demand<br>Prediction | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand Prediction<br>for circuit 4             | Rx=S4_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 3076H<br>-<br>3077H | 12406<br>-<br>12407 | User<br>Channel<br>4 Total<br>Apparent<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Apparent Power<br>Demand for circuit 4                   | Rx=S4_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                             | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3078H<br>-<br>307AH | 12408<br>-<br>12410 | User<br>Channel<br>4 Total<br>Apparent<br>Power<br>Demand<br>Peak Time | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Apparent Power<br>Demand for circuit 4 | Rx=                    |          |              | R                  |
| 307BH<br>-<br>307CH | 12411<br>-<br>12412 | User<br>Channel<br>5 Total<br>Power<br>Demand                          | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand for<br>circuit 5                                    | Rx=P5_<br>DMD          | kW       | Float        | R                  |
| 307DH<br>-<br>307EH | 12413<br>-<br>12414 | User<br>Channel<br>5 Total<br>Power<br>Demand<br>Prediction            | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand<br>Prediction for circuit<br>5                      | Rx=P5_<br>Pred_<br>DMD | kW       | Float        | R                  |
| 307FH<br>-<br>3080H | 12415<br>-<br>12416 | User<br>Channel<br>5 Total<br>Power<br>Demand<br>Peak                  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Power Demand<br>for circuit 5                            | Rx=P5_<br>Max_DMD      | kW       | Float        | R                  |
| 3081H<br>-<br>3083H | 12417<br>-<br>12419 | User<br>Channel<br>5 Total<br>Power<br>Demand<br>Peak Time             | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Power Demand<br>for circuit 5          | Rx=                    |          |              | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 3084H<br>-<br>3085H | 12420<br>-<br>12421 | User<br>Channel<br>5 Total<br>Reactive<br>Power<br>Demand               | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand for circuit 5                           | Rx=Q5_<br>DMD          | kvar     | Float        | R                  |
| 3086H<br>-<br>3087H | 12422<br>-<br>12423 | User<br>Channel<br>5 Total<br>Reactive<br>Power<br>Demand<br>Prediction | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand Prediction<br>for circuit 5             | Rx=Q5_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 3088H<br>-<br>3089H | 12424<br>-<br>12425 | User<br>Channel<br>5 Total<br>Reactive<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Reactive Power<br>Demand for circuit 5                   | Rx=Q5_<br>Max_DMD      | kvar     | Float        | R                  |
| 308AH<br>-<br>308CH | 12426<br>-<br>12428 | User<br>Channel<br>5 Total<br>Reactive<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Reactive Power<br>Demand for circuit 5 | Rx=                    |          |              | R                  |
| 308DH<br>-<br>308EH | 12429<br>-<br>12430 | User<br>Channel<br>5 Total<br>Apparent<br>Power<br>Demand               | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand for circuit 5                           | Rx=S5_<br>DMD          | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 308FH<br>-<br>3090H | 12431<br>-<br>12432 | User<br>Channel<br>5 Total<br>Apparent<br>Power<br>Demand<br>Prediction | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand Prediction<br>for circuit 5             | Rx=S5_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 3091H<br>-<br>3092H | 12433<br>-<br>12434 | User<br>Channel<br>5 Total<br>Apparent<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Apparent Power<br>Demand for circuit 5                   | Rx=S5_<br>Max_DMD      | kVA      | Float        | R                  |
| 3093H<br>-<br>3095H | 12435<br>-<br>12437 | User<br>Channel<br>5 Total<br>Apparent<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Apparent Power<br>Demand for circuit 5 | Rx=                    |          |              | R                  |
| 3096H<br>-<br>3097H | 12438<br>-<br>12439 | User<br>Channel<br>6 Total<br>Power<br>Demand                           | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand for<br>circuit 6                                    | Rx=P6_<br>DMD          | kW       | Float        | R                  |
| 3098H<br>-<br>3099H | 12440<br>-<br>12441 | User<br>Channel<br>6 Total<br>Power<br>Demand<br>Prediction             | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Power Demand<br>Prediction for circuit 6                         | Rx=P6_<br>Pred_<br>DMD | kW       | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                            | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 309AH<br>-<br>309BH | 12442<br>-<br>12443 | User<br>Channel<br>6 Total<br>Power<br>Demand<br>Peak                   | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Power Demand<br>for circuit 6                   | Rx=P6_<br>Max_DMD      | kW       | Float        | R                  |
| 309CH<br>-<br>309EH | 12444<br>-<br>12446 | User<br>Channel<br>6 Total<br>Power<br>Demand<br>Peak Time              | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Power Demand<br>for circuit 6 | Rx=                    |          |              | R                  |
| 309FH<br>-<br>30A0H | 12447<br>-<br>12448 | User<br>Channel<br>6 Total<br>Reactive<br>Power<br>Demand               | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand for circuit 6                  | Rx=Q6_<br>DMD          | kvar     | Float        | R                  |
| 30A1H<br>-<br>30A2H | 12449<br>-<br>12450 | User<br>Channel<br>6 Total<br>Reactive<br>Power<br>Demand<br>Prediction | Three Phase-four<br>wire/Single Phase-<br>three-wire: Total<br>Reactive Power<br>Demand Prediction<br>for circuit 6    | Rx=Q6_<br>Pred_<br>DMD | kvar     | Float        | R                  |
| 30A3H<br>-<br>30A4H | 12451<br>-<br>12452 | User<br>Channel<br>6 Total<br>Reactive<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Reactive Power<br>Demand for circuit 6          | Rx=Q6_<br>Max_DMD      | kvar     | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                              | Description                                                                                                                     | Relationship           | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------|--------------------|
| 30A5H<br>-<br>30A7H | 12543<br>-<br>12455 | User<br>Channel<br>6 Total<br>Reactive<br>Power<br>Demand<br>Peak Time  | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Reactive Power<br>Demand for circuit 6 | Rx=                    |          |              | R                  |
| 30А8Н<br>-<br>30А9Н | 12456<br>-<br>12457 | User<br>Channel<br>6 Total<br>Apparent<br>Power<br>Demand               | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand for circuit 6                           | Rx=S6_<br>DMD          | kVA      | Float        | R                  |
| 30AAH<br>-<br>30ABH | 12458<br>-<br>12459 | User<br>Channel<br>6 Total<br>Apparent<br>Power<br>Demand<br>Prediction | Three Phase-<br>four wire/Single<br>Phase-three-wire:<br>Total Apparent Power<br>Demand Prediction<br>for circuit 6             | Rx=S6_<br>Pred_<br>DMD | kVA      | Float        | R                  |
| 30ACH<br>-<br>30ADH | 12460<br>-<br>12461 | User<br>Channel<br>6 Total<br>Apparent<br>Power<br>Demand<br>Peak       | Three Phase-four<br>wire/Single Phase-<br>three-wire: Maximum<br>Total Apparent Power<br>Demand for circuit 6                   | Rx=S6_<br>Max_DMD      | kVA      | Float        | R                  |





| Address (H)         | Address (D)         | Parameters                                                             | Description                                                                                                                     | Relationship | Property | Data<br>Type | Access<br>Property |
|---------------------|---------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|----------|--------------|--------------------|
| 30AEH<br>-<br>30B0H | 12462<br>-<br>12464 | User<br>Channel<br>6 Total<br>Apparent<br>Power<br>Demand<br>Peak Time | Three Phase-four<br>wire/Single Phase-<br>three-wire: Time<br>Stamp for Maximum<br>Total Apparent Power<br>Demand for circuit 6 | Rx=          |          |              | R                  |

#### **Power Quality**

| Address (H) | Address (D) | Parameter                               | Range | Data<br>Type | Access<br>Property |
|-------------|-------------|-----------------------------------------|-------|--------------|--------------------|
|             |             | Incoming Power Quality                  |       |              |                    |
| 3200H       | 12800       | Voltage Unbalance                       |       | word         | R                  |
| 3201H       | 12801       | U1 or U12 Harmonic Distortion<br>THD-U1 |       | word         | R                  |
| 3202H       | 12802       | U2 or U23 Harmonic Distortion<br>THD-U2 |       | word         | R                  |
| 3203H       | 12803       | U3 or U31 Harmonic Distortion<br>THD-U3 |       | word         | R                  |
| 3204H       | 12804       | Average Voltage Harmonic<br>Distortion  |       | word         | R                  |
| 3205H       | 12805       | U1 or U12 2nd Harmonic                  |       | word         | R                  |
| 3206H       | 12806       | U1 or U12 3rd Harmonic                  |       | word         | R                  |
|             |             |                                         |       | word         | R                  |
| 3222H       | 12834       | U1 or U12 31st Harmonic                 |       | word         | R                  |
| 3223H       | 12835       | U2 or U23 2nd Harmonic                  |       | word         | R                  |
| 3224H       | 12836       | U2 or U23 3rd Harmonic                  |       | word         | R                  |
|             |             |                                         |       | word         | R                  |





| Address (H) | Address (D) | Parameter                                     | Range | Data<br>Type | Access<br>Property |
|-------------|-------------|-----------------------------------------------|-------|--------------|--------------------|
| 3240H       | 12864       | U2 or U23 31st Harmonic                       |       | word         | R                  |
| 3241H       | 12865       | U3 or U31 2nd Harmonic                        |       | word         | R                  |
| 3242H       | 12866       | U3 or U31 3rd Harmonic                        |       | word         | R                  |
|             |             |                                               |       | word         | R                  |
| 325EH       | 12894       | U3 or U31 31st Harmonic                       |       | word         | R                  |
| 325FH       | 12895       | Current Unbalance                             |       | Word         | R                  |
| 3260H       | 12896       | U1 Odd Harmonic Distortion                    |       | Word         | R                  |
| 3261H       | 12897       | U1 Even Harmonic Distortion                   |       | Word         | R                  |
| 3262H       | 12898       | U1 Crest Factor                               |       | Word         | R                  |
| 3263H       | 12899       | U1 Telephone Harmonic Form<br>Factor          |       | Word         | R                  |
| 3264H       | 12900       | U2 Odd Harmonic Distortion                    |       | Word         | R                  |
| 3265H       | 12901       | U2 Even Harmonic Distortion                   |       | Word         | R                  |
| 3266H       | 12902       | U2 Crest Factor                               |       | Word         | R                  |
| 3267H       | 12903       | U2 Telephone Harmonic Form<br>Factor          |       | Word         | R                  |
| 3268H       | 12904       | U3 Odd Harmonic Distortion                    |       | Word         | R                  |
| 3269H       | 12905       | U3 Even Harmonic Distortion                   |       | Word         | R                  |
| 326AH       | 12906       | U3 Crest Factor                               |       | Word         | R                  |
| 326BH       | 12907       | U3 Telephone Harmonic Form<br>Factor          |       | Word         | R                  |
| 32A0H       | 12960       | Channel 1 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32A1H       | 12961       | Channel 1 Current Even Harmonic<br>Distortion |       | Word         | R                  |





| Address (H) | Address (D) | Parameter                                     | Range | Data<br>Type | Access<br>Property |
|-------------|-------------|-----------------------------------------------|-------|--------------|--------------------|
| 32A2H       | 12962       | Channel 1 Current K Factor                    |       | Word         | R                  |
| 32A3H       | 12963       | Channel 2 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32A4H       | 12964       | Channel 2 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32A5H       | 12965       | Channel 2 Current K Factor                    |       | Word         | R                  |
| 32A6H       | 12966       | Channel 3 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32A7H       | 12967       | Channel 3 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32A8H       | 12968       | Channel 3 Current K Factor                    |       | Word         | R                  |
| 32A9H       | 12969       | Channel 4 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32AAH       | 12970       | Channel 4 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32ABH       | 12971       | Channel 4 Current K Factor                    |       | Word         | R                  |
| 32ACH       | 12972       | Channel 5 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32ADH       | 12973       | Channel 5 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32AEH       | 12974       | Channel 5 Current K Factor                    |       | Word         | R                  |
| 32AFH       | 12975       | Channel 6 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32B0H       | 12976       | Channel 6 Current Even Harmonic<br>Distortion |       | Word         | R                  |





| Address (H) | Address (D) | Parameter                                      | Range | Data<br>Type | Access<br>Property |
|-------------|-------------|------------------------------------------------|-------|--------------|--------------------|
| 32B1H       | 12977       | Channel 6 Current K Factor                     |       | Word         | R                  |
| 32B2H       | 12978       | Channel 7 Current Odd Harmonic<br>Distortion   |       | Word         | R                  |
| 32B3H       | 12979       | Channel 7 Current Even Harmonic<br>Distortion  |       | Word         | R                  |
| 32B4H       | 12980       | Channel 7 Current K Factor                     |       | Word         | R                  |
| 32B5H       | 12981       | Channel 8 Current Odd Harmonic<br>Distortion   |       | Word         | R                  |
| 32B6H       | 12982       | Channel 8 Current Even Harmonic<br>Distortion  |       | Word         | R                  |
| 32B7H       | 12983       | Channel 8 Current K Factor                     |       | Word         | R                  |
| 32B8H       | 12984       | Channel 9 Current Odd Harmonic<br>Distortion   |       | Word         | R                  |
| 32B9H       | 12985       | Channel 9 Current Even Harmonic<br>Distortion  |       | Word         | R                  |
| 32BAH       | 12986       | Channel 9 Current K Factor                     |       | Word         | R                  |
| 32BBH       | 12987       | Channel 10 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32BCH       | 12988       | Channel 10 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32BDH       | 12989       | Channel 10 Current K Factor                    |       | Word         | R                  |
| 32BEH       | 12990       | Channel 11 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32BFH       | 12991       | Channel 11 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32C0H       | 12992       | Channel 11 Current K Factor                    |       | Word         | R                  |





| Address (H) | Address (D) | Parameter                                      | Range | Data<br>Type | Access<br>Property |
|-------------|-------------|------------------------------------------------|-------|--------------|--------------------|
| 32C1H       | 12993       | Channel 12 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32C2H       | 12994       | Channel 12 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32C3H       | 12995       | Channel 12 Current K Factor                    |       | Word         | R                  |
| 32C4H       | 12996       | Channel 13 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32C5H       | 12997       | Channel 13 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32C6H       | 12998       | Channel 13 Current K Factor                    |       | Word         | R                  |
| 32C7H       | 12999       | Channel 14 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32C8H       | 13000       | Channel 14 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32C9H       | 13001       | Channel 14 Current K Factor                    |       | Word         | R                  |
| 32CAH       | 13002       | Channel 15 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32CBH       | 13003       | Channel 15 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32CCH       | 13004       | Channel 15 Current K Factor                    |       | Word         | R                  |
| 32CDH       | 13005       | Channel 16 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |
| 32CEH       | 13006       | Channel 16 Current Even Harmonic<br>Distortion |       | Word         | R                  |
| 32CFH       | 13007       | Channel 16 Current K Factor                    |       | Word         | R                  |
| 32D0H       | 13008       | Channel 17 Current Odd Harmonic<br>Distortion  |       | Word         | R                  |





| Address (H)            | Address (D)         | Parameter                                         | Range                | Data<br>Type | Access<br>Property |
|------------------------|---------------------|---------------------------------------------------|----------------------|--------------|--------------------|
| 32D1H                  | 13009               | Channel 17 Current Even Harmonic<br>Distortion    |                      | Word         | R                  |
| 32D2H                  | 13010               | Channel 17 Current K Factor                       |                      | Word         | R                  |
| 32D3H                  | 13011               | 011 Channel 18 Current Odd Harmonic<br>Distortion |                      | Word         | R                  |
| 32D4H                  | 13012               | Channel 18 Current Even Harmonic<br>Distortion    |                      | Word         | R                  |
| 32D5H                  | 13013               | Channel 18 Current K Factor                       |                      | Word         | R                  |
| 18 Single - Phase Data |                     |                                                   |                      |              |                    |
| 3300H                  | 13056               | Channel 1 Current THD-I1                          |                      | word         | R                  |
| 3301H                  | 13057               | Channel 1 Current 2nd Harmonic                    |                      | word         | R                  |
|                        |                     |                                                   |                      | word         | R                  |
| 331EH                  | 13086               | Channel 1 Current 31st Harmonic                   |                      | word         | R                  |
| 331FH<br>-<br>333DH    | 13087<br>-<br>13117 | Channel 2 Current Harmonic Data                   | Same as<br>Channel 1 | word         | R                  |
| 333EH<br>-<br>335CH    | 13118<br>-<br>13148 | Channel 3 Current Harmonic Data                   | Same as<br>Channel 1 | word         | R                  |
| 335DH<br>-<br>337BH    | 13149<br>-<br>13179 | Channel 4 Current Harmonic Data                   | Same as<br>Channel 1 | word         | R                  |
| 337CH<br>-<br>339AH    | 13180<br>-<br>13210 | Channel 5 Current Harmonic Data                   | Same as<br>Channel 1 | word         | R                  |
| 339BH<br>-<br>33B9H    | 13211<br>-<br>13241 | Channel 6 Current Harmonic Data                   | Same as<br>Channel 1 | word         | R                  |





| Address (H)         | Address (D)         | Parameter                           | Range                | Data<br>Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------|----------------------|--------------|--------------------|
| 33BAH<br>-<br>33D8H | 13242<br>-<br>13272 | Channel 7 Current Harmonic Data     | Same as<br>Channel 1 | word         | R                  |
| 33D9H<br>-<br>33F7H | 13273<br>-<br>13303 | Channel 8 Current Harmonic Data     | Same as<br>Channel 1 | word         | R                  |
| 33F8H<br>-<br>3416H | 13304<br>-<br>13334 | Channel 9 Current Harmonic Data     | Same as<br>Channel 1 | word         | R                  |
| 3417H<br>-<br>3435H | 13335<br>-<br>13365 | Channel 10 Current Harmonic<br>Data | Same as<br>Channel 1 | word         | R                  |
| 3436H<br>-<br>3454H | 13366<br>-<br>13396 | Channel 11 Current Harmonic<br>Data | Same as<br>Channel 1 | word         | R                  |
| 3455H<br>-<br>3473H | 13397<br>-<br>13427 | Channel 12 Current Harmonic<br>Data | Same as<br>Channel 1 | word         | R                  |
| 3474H<br>-<br>3492H | 13428<br>-<br>13458 | Channel 13 Current Harmonic<br>Data | Same as<br>Channel 1 | word         | R                  |
| 3493H<br>-<br>34B1H | 13459<br>-<br>13489 | Channel 14 Current Harmonic<br>Data | Same as<br>Channel 1 | word         | R                  |
| 34B2H<br>-<br>34D0H | 13490<br>-<br>13520 | Channel 15 Current Harmonic<br>Data | Same as<br>Channel 1 | word         | R                  |
| 34D1H<br>-<br>34EFH | 13521<br>-<br>13551 | Channel 16 Current Harmonic<br>Data | Same as<br>Channel 1 | word         | R                  |





| Address (H)         | Address (D)                                     | Parameter                                            | Range                | Data<br>Type | Access<br>Property |  |
|---------------------|-------------------------------------------------|------------------------------------------------------|----------------------|--------------|--------------------|--|
| 34F0H<br>-<br>350EH | 13552<br>-<br>13582                             | Channel 17 Current Harmonic<br>Data                  | Same as<br>Channel 1 | word         | R                  |  |
| 350FH<br>-<br>352DH | 13583<br>-<br>13613                             | Channel 18 Current Harmonic<br>Data                  | Same as<br>Channel 1 | word         | R                  |  |
|                     | Channel 1 - Channel 18 single phase 3 line data |                                                      |                      |              |                    |  |
| 352EH               | 13614                                           | User 1 Three-Phase/Single Three<br>Current Unbalance |                      | word         | R                  |  |
| 352FH               | 13615                                           | User 2 Three-Phase/Single Three<br>Current Unbalance |                      | word         | R                  |  |
| 3530H               | 13616                                           | User 3 Three-Phase/Single Three<br>Current Unbalance |                      | word         | R                  |  |
| 3531H               | 13617                                           | User 4 Three-Phase/Single Three<br>Current Unbalance |                      | word         | R                  |  |
| 3532H               | 13618                                           | User 5 Three-Phase/Single Three<br>Current Unbalance |                      | word         | R                  |  |
| 3533H               | 13619                                           | User 6 Three-Phase/Single Three<br>Current Unbalance |                      | word         | R                  |  |

#### Alarm Log

| Address (H) | Address (D) | Parameter                                                     | Range   | Data Type | Access<br>Property |
|-------------|-------------|---------------------------------------------------------------|---------|-----------|--------------------|
| 3700        | 14080       | Alarm status of currently read record                         |         | integer   | R                  |
| 3701        | 14081       | The serial number of<br>the parameter currently<br>being read | 0 - 352 | integer   | R                  |





| Address (H)         | Address (D)         | Parameter                                                                           | Range                                                         | Data Type | Access<br>Property |
|---------------------|---------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------|--------------------|
| 3702                | 14082               | The current reading<br>recorded -limit or restore the<br>parameters' values         |                                                               | integer   | R                  |
| 3703<br>-<br>3709   | 14083<br>-<br>14089 | Occurrence time of current read record                                              | Year, month,<br>day, hour,<br>minute, second,<br>millisecond  | integer   | R                  |
| 370A                | 14090               | The group number of the latest alarm record                                         | 1- 2 0 , 0 means<br>no alarm record                           | integer   | R                  |
| 370B                | 14091               | Alarm record number<br>currently read                                               | 1- 2 0, other<br>values are invalid                           | integer   | R/W                |
| 370CH<br>-<br>3715H | 14092<br>-<br>14101 | First . 1 Article alarm log<br>(record format with the<br>current read)             | The format is<br>the same as the<br>current reading<br>record |           | R                  |
| 3716H<br>-<br>371FH | 14102<br>-<br>14111 | Article 2 Alarm record (the<br>format is the same as the<br>current reading record) | The format is<br>the same as the<br>current reading<br>record |           | R                  |
| 3720H<br>-<br>37D3H | 14112<br>-<br>14291 | Of 3 ~ section 20<br>is Article alarm records                                       |                                                               |           |                    |

Alarm status: the high byte indicates the alarm channel number 1-10, the low byte bit0 is 1 indicates that the alarm is generated, and 0 indicates that the alarm is restored

Only one alarm record can be read at a time, by reading the setting of (a current reading alarm record number)





#### System Event

| Address<br>(H)      | Address<br>(D)      | Parameter                                                                                                          | Range                                                                         | Data<br>Type | Access<br>Property |
|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|--------------------|
| 3800H<br>-<br>3805H | 14336<br>-<br>14341 | The time when<br>the current system<br>event record was read                                                       | Year, month, day,<br>hour, minute, second                                     | word         | R                  |
| 3806H               | 14342               | Event ID currently reading the system event record                                                                 | 1-16<br>Indicates 1-16 events                                                 | word         |                    |
| 3807H               | 14343               | The latest event record group number                                                                               | 1-100 , 0 means no                                                            | word         |                    |
| 3808H               | 14344               | The record number of the currently read event                                                                      | 1-100 , other values<br>are invalid                                           | word         | R/W                |
| 6000Н<br>-<br>6006Н | 24576<br>-<br>24582 | Article 1 System Event Record<br>(The format is the same as<br>the current read system<br>event record )           | (The format is the<br>same as the current<br>reading system<br>event record ) |              | R                  |
| 6007H<br>-<br>62BBH | 24583<br>-<br>25275 | Of 2 Article ~ section 100<br>Article System Event Log<br>(reading system event format<br>with the current record) | (The format is the<br>same as the current<br>reading system<br>event record ) |              | R                  |







#### Automation Components, Inc.

[Engineering a Better Sensor Solution]

AUTOMATION COMPONENTS, INC. 2305 N Pleasant View Rd, Middleton, WI 53562 USA Phone: 1-888-967-5224 Email: techsupport@workaci.com



wision Date: Sep., 2020 Document # 2300E2100